

Dynamic Key Grouping:

A Load Balancing Algorithm for Distributed
Stream Processing Engines

Orhun Dalabasmaz, Ahmet Burak Can

Abstract—Load balancing is important more than ever in distributed world, especially with Stream Processing. The load should

be equally balanced among the servers in order to achieve lower latencies. We study the problem of load balancing in

distributed stream processing engines in the presence of data skewness. We examined the current approaches and solutions

then introduced Dynamic Key Grouping (DKG), an improved stream partitioning schema based on Partial Key Grouping (PKG)

technique which also adapts the classical “power of two choices” approach. DKG is a smart stream partitioning algorithm that

can detect the skewness and share the load among the servers regardless of the data content, thus reduces the latency and

increases throughput. In contrast to PKG, DKG achieves this by distributing data to more than two servers depending on the

amount of the load.

We test DKG alongside of KG, SG and PKG on several large datasets, both real-world and synthetic on a Storm topology.

Compared to PKG, DKG improves the latency up to 7% and throughput up to %8 when the skewness is 30%. Moreover, DKG

improves the latency up to 48% and throughput up to 93% when the skewness is higher than 80%. However, we conclude that

PKG is acceptable and preferable with the skewness under 30%.

Index Terms—Distributed stream processing, load balancing, power of multiple choices, key grouping, stream partitioning.

—————————— ◆ ——————————

1 INTRODUCTION

ith the technological age we are in, technological

devices are an indispensable part of our life. Every

day, the devices used and the applications and users of

these devices are also increasing. All these increases cause

a huge grow of data produced and so the variety of data.

The volume and the variety of the produced data is so

increased that it is no longer possible for single machine

to stand alone. On the other hand, requirements force us

to process data in real-time. Therefore, cluster of

machines is used for high efficiency, fault-tolerant and

robust systems. By using cluster, we aim to process all

data as soon as possible by distributing the data to all

nodes in cluster. In order to achieve this, the data or the

load should be distributed to the machines as equally as

possible. Unbalanced distribution of the load means that a

number of machines will work more intensively than

others, and thus each machine will not be used efficiently.

Systems that process real-time data have two main

problems to consider: i) the data processing speed should

be higher than the speed of data arrival, and ii) the data

should be distributed evenly among all the machines in

the cluster. Besides the first fact, it is a necessity for all

real-time data processing applications, and it is also

related to the algorithms to be run directly on the data.

For this reason, it is not possible to offer a general

solution in this regard.

Distributing the data evenly among the machines, on

the other hand, can be improved by accepted approaches,

depending on the content of the data. In the ideal

scenario, the data can be distributed equally to the

machines so that we can obtain the lowest latency. At this

point, the determinative one for us is whether there is a

relationship between the data to be processed. If the data

are independent of each other, the data can be distributed

equally, as mentioned. However, if there is a relationship

between the data, thus the data alone is insignificant or

incomplete, then we need to design a structure that

aggregates the stateful data and generates a valuable

output.

Conventional approaches suggest two different

solutions: i) each related data is distinguished by a key

value should be send to the same machine, ii) all the data

should be distributed equally to the machines, but

afterwards an extra machine should perform the task of

aggregating the data in order to have valuable result. In

the first approach, depending on the content of the

incoming data, if the data is so skew, some machines will

be overloaded while others have very little load. This

causes the data processing speed to be reduced

considerably and the machines not to be used efficiently.

In the second approach, although the load is always

guaranteed to be distributed in a balanced manner, the

fact that the data related to each other is distributed to all

the machines causes the data to be insignificant and to be

aggregated again on another machine. This brings

additional cost to the system. Both approaches can

produce different results depending on the type and

content of the data. Both methods are not practicable, as

they are real-time data processing, and we cannot know

———————————————————————————————————

• Orhun Dalabasmaz is with Hacettepe University, Ankara, Turkey.
E-mail: odalabasmaz@gmail.com.

• Ahmet Burak Can is with Hacettepe University, Ankara, Turkey.
E-mail: abc@cs.hacettepe.edu.tr.

W

mailto:odalabasmaz@gmail.com
mailto:abc@cs.hacettepe.edu.tr.m

the kind and the content of the upcoming data next.

In this paper, the problem of balanced distribution of

data load between machines has been studied and load

balancing approaches such as Key Grouping (KG), Shuffle

Grouping (SG) and Partial Key Grouping (PKG) have been

examined. The current approaches and the proposed new

approach, Dynamic Key Grouping (DKG), have been

thoroughly compared and tested with several datasets.

The datasets are determined that each approach can and

cannot be applied. Furthermore, we prove that the

proposed approach, Dynamic Key Grouping, is particularly

successful in skew datasets.

The rest of the paper is structured as follows: In Section

2, we briefly explain Stream Processing systems and then

explain Storm in detail which is the Stream Processing

Engine we used in our experiments. In Section 3, we

examine the load balancing methods and existing

methods such as Key Grouping (KG) and Shuffle Grouping

(SG) in the Storm library. We also examine and elaborate

the proposed new methods for the cases where the

mentioned methods are inadequate in this context. In

Section 4, we propose a new method against these non-

performing methods in the existence of skew datasets and

call it as Dynamic Key Grouping (DKG). Furthermore, we

also give the details of the proposal and the architecture

of the solution. In Section 5, we give the resources and

datasets used, and provide information about setting up

environments and related software components. In

Section 6, we give details about the execution of the

application. We provide simulation results demonstrating

the benefits of the proposed method with existence of

skew data and evaluate the results. We also mention the

problems encountered in this context. In Section 7, we

outline the results, discuss the method, and the future

work.

2 STREAM PROCESSING METHODS

In this section, we will go through the stream processing

methods and take a glance at the data processing

structures which are visualized in Figure-1.

Fig 1. Data processing systems

2.1 Data Processing Types

Data processing methods are structurally divided into two

groups as Distributed and Non-Distributed and in terms

of processing of the data, they are divided into two

groups as Batch Data Processing and Stream Data

Processing.

2.1.1 Non-Distributed Data Processing

Data is processed in a single machine. Because of the

system works on one physical machine, architecture does

not support horizontal growth, only vertical growth, and

CPU and RAM resources are possible to increase. Since

the operations are performed on a single machine, the

application is dominant and there is no need to receive

information from other machines.

2.1.2 Distributed Data Processing

Data is distributed to several machines to be processed. In

distributed structures, there are computer clusters. That is,

the system can operate simultaneously on more than one

physical machine. The architecture is suitable for growing

horizontally, and all applications that will work should plan

operations by predicting that more than one machine will

work. Since the data is distributed to more than one

machine, the coordination between the machines must be

managed and the information in the other machines must

be taken in order to be able to produce meaningful

results and be combined into a single point.

2.1.3 Batch Data Processing

Batch Data Processing refers to the processing of a large

volume of data independently of one another. So, there is

no relation between the arrival time and the processing

time of the data. For a while the incoming data are

collected in a place and processed collectively at certain

time intervals. In this method, when the data is being

processed, the entire data is under control and its size is

well known.

2.1.4 Stream Data Processing

Unlike Batch Data Processing, Stream Data Processing

involves continuity and motion. Instead of collecting and

processing the data, the data is turned into streams and

processed one by one. Stream Data Processing methods

have the ability to perform event-driven continuous

processing. However, there are no time constraints to

process the data and produce results.

2.1.5 Real-time Data Processing

Streaming Data Processing is often confused with Real-

Time Data Processing because they have very close

meanings. For this reason, it is necessary to understand

the difference. Real Time Data Processing applications

have to work continuously, that is, continuous data input

and output is done through the system. In addition, there

is time constraint compared to Stream Data Processing. In

other words, the data entering the system should be

processed in the shortest time to produce output. We can

exemplify this in our home TVs. Televisions must process

the stream of video streaming from the satellite as soon

as possible and display it on the screen, otherwise we may

watch a live broadcast delayed for a few minutes.

Real-Time Data Processing methods are basically

Stream Data Processing methods which have to work

continuously with time constraints. So, the more efficient

and fast the Stream Data Processing algorithms work, the

more real-time results we get. Processing of some data

may take some time. In those cases where data can be

accepted according to the nature of the study and the

work, we will have Near Real-Time results.

2.1.6 Hybrid Data Processing

Hybrid Data Processing, which is also called as Lambda

architecture, provides the combined use of both Batch

Data Processing and Stream Data Processing methods for

large-scale data processing. In this way, Batch Data

Processing provides efficiency in terms of delay time,

productivity, error resilience, and instantaneous tracking

of changes with Stream Data Processing.

2.2 Stream Processing Engines

Stream processing engines are used for processing data

from an unbounded and lasting stream source. Stream

Data Processing has also been adopted as a next

generation programming approach, apart from being a

Big Data Environment. Even when working on a simple

array, the flow of data dynamics is beginning to be used.

For such a widespread structure, many open-source

coded data processing tools have been developed. In

general, the problems solved by them are close to each

other, but they can differ and be preferred in terms of

their development and solution methods over time. Some

of these are: Samza1, S42, Spark3, Storm4, Heron5, Kafka

Streams6, Hazelcast Jet7 and Kinesis8. In this study, we

used Storm to run our application on.

Storm4 is a stream processing framework that focuses

on extremely low latency and is perhaps the best option

for workloads that require near real-time processing. It

can handle very large quantities of data and deliver results

with less latency than other solutions [1].

2.3 Storm Architecture

Storm architecture is very similar to Hadoop architecture.

While MapReduce jobs are run in Hadoop, topologies are

run in Storm. Storm is also compared to Spark. One of the

biggest fundamental differences between the two is that

Storm works on individual events as Samza does, and

Spark Streaming works on micro-batches [2].

2.3.1 Storm Basics

Storm stream processing works by orchestrating DAGs

(Directed Acyclic Graphs) which consists of spouts and

bolts. This framework is called as topology and totally

based on tuples and streams. Topologies are a process

structure that includes the steps of retrieving the

incoming dataset from the source, performing various

operations, and generating output. A Tuple is the

minimum data package that can be transferred between

the spouts and bolts, and it also describes the data

structure. Stream, on the other hand, refers to an

unlimited number of Tuple series. The source of the

Stream in topology is a Spout. Spout is the entrance point

of the data and data may be gathered from a queue, API

or any other file systems. Bolts, on the other hand,

represents a processing step that consumes streams,

applies an operation on them, and outputs the result as a

stream. Bolts are connected to each of the Spouts and

other Bolts as show in Fig2. to compose a topology.

2.3.2 Storm Cluster Architecture

Storm cluster architecture, as seem in Fig.3, has two types

of nodes, Nimbus (master node), Supervisor (worker

node) and a coordinator, Zookeeper9. Nimbus is a

daemon similar to Job Tracker in Hadoop and responsible

for running the topology. Nimbus analyses the topology,

distributes the code to be run in workers, gathers the

tasks to be executed and then assigns tasks to the

available Supervisors (workers). A supervisor, on the other

hand, may have one or more worker process and

delegates the tasks to these processes.

Nimbus and Supervisor run as fail-fast and stateless.

Being stateless lets the system more reliable and fault

tolerant. Although the machines do not store states,

Storm is not entirely stateless though. The states of the

coordination and the communication between Nimbus

and Supervisor should be handled separately by another

system, Zookeeper. Zookeeper stores the states and helps

a failed nimbus or supervisor to be restarted and made to

work from where it left.

———————————————————————————————————

1
Samza: http://samza.apache.org/

2
S4: https://github.com/s4

3
Spark: http://spark.apache.org/

4
Storm: http://storm.apache.org/

5
Heron: https://twitter.github.io/heron/

6
Kafka Streams: https://kafka.apache.org/documentation/streams

7
Hazelcast Jet: http://jet.hazelcast.org/

8
Kinesis: https://aws.amazon.com/kinesis/

———————————————————————————————————

9
Zookeeper: https://zookeeper.apache.org/

Fig 2. Storm topology

2.3.3 Worker Process, Executor and Task in Topologies

In a Storm topology, there may be more than one worker

processes running. Each worker process executes a subset

of a topology and runs in its own JVM. An executor is a

thread that is spawned by a worker process and runs

within the worker’s JVM. An executor may run one or

more tasks for the same component (spout or bolt). A

task performs the actual data processing and is run within

its parent executor’s thread of execution. Each spout or

bolt that you implement in your code executes as many

tasks across the cluster [3].

2.3.4 Grouping

A stream grouping defines how that stream should be

partitioned among the bolt's tasks. There are eight built-in

stream groupings in Storm, and moreover, we can

implement a custom stream grouping too. Above all else,

there are two base grouping methods: Shuffle Grouping

and Key/Fields Grouping. In Shuffle Grouping (SG), tuples

are randomly distributed across the bolt’s tasks and we

can basically be sure that each task gets an equal number

of tuples. In Key/Fields Grouping (KG), on the other hand,

tuples are distributed across the bolt’s tasks by the fields

specified in the grouping. These fields belong the data

and we can choose which fields to be key for distribution.

In case we choose user name field as key with Key

Grouping, then we can guarantee that each tuple with the

same user name, will always go to the same exact task,

but tuples with different user names may go to different

tasks. This will make it easier to do some calculations over

the related data. As you may notice, contrary to Shuffle

Grouping, we cannot guarantee that each task will get an

equal number of tuples. Because, the distribution depends

on the data and the field chosen as key and this may lead

some tasks getting more tuples than the others. For such

cases, the third option is to define our custom stream

grouping. In custom stream grouping, we can decide

which tuple will go to which task.

3 LOAD BALANCING METHODS

Distributing the data evenly may be crucial to achieve

high performance which helps to increase throughput and

reduce latency.

3.1 Data Distribution and Processed Data Relation

Distribution of the tuples depends directly on the content

of the data. If the data is stateless, we can use Shuffle

Grouping without considering the content of the data.

This will help us to distribute the tuples evenly across the

tasks and get high performance from the topology. With

the stateful data, however, we need to gather related data

into the same place in order to aggregate and obtain a

single and final result. In this case, we should prefer Key

Grouping because Key Grouping natively gathers related

data into the same place. On the one hand, with Shuffle

Grouping, we will have to gather all distributed data into

the single place, and this will bring extra burden to

system. On the other hand, since we cannot predict the

stream data, Key Grouping may still bring extra burden to

system. Because in case of skew data input, load will be

gathered in a single task executor.

It’s the last thing we want to have an impacted system

by skew data. Because the same type of data that might

come in at certain times can adversely affect the

performance of the system and reduce productivity and

increase latency. Such delay can be costly in systems that

operate in real time and produce output. Also, because we

cannot always predict future data, our system will not be

stable and scalable. This means that the system will work

in an unpredictable way.

Another problem is that we cannot control the entire

system. If we could manage the whole distribution in the

system from a single point, it would be possible for us to

distribute the load in the best way as long as we dominate

the entire system. However, in systems with distributed

architecture, having a single machine that knows

everything is not recommended, not very practical. For

this reason, it is inevitable to concentrate on alternative

solutions to solve the problem of load balancing in

distributed systems.

Fig 3. Storm cluster structure

Fig 4. Storm Worker Topology

3.2 Related Works

Since the need of many big data applications in science

and industry have arisen, several solutions have been

proposed to analyze large amounts of streamed or event

data with low latency [15, 16].

Stream processing engines also gain popularity with

the need of real-time results after processing large of

data. [17] presents a reactive strategy to enforce latency

guarantees in data flows running on scalable Stream

Processing Engines (SPEs), while minimizing resource

consumption. [18] shows that the custom partitioning

methods, compared to default hash partitioning, save the

memory space by reducing the size of aggregate states

during execution of different graph processing algorithms

on the resulting partitions. [19] proposes an effective

partitioning strategy that uses a correlation-aware multi-

route stream query optimizer (or CMR) for highly

correlated data. It uses multi-route optimization which is

based on the insight that tuples with similar statistical

properties are likely to be best served by the same route

[14]. Multi-route first divides data streams into several

partitions and then creates a separate query plan for each

combination of partitions. [20] proposes an adaptive input

admission and management for parallel stream

processing and it takes as input any available information

about input stream behaviors and the requirements of the

query processing layer, and adaptively decides how to

adjust the entry points of streams to the system. To have a

robust system at scale is also important for applications

that processes large of data in a very brief amount of time

like Twitter which uses Heron [21] to process stream at

scale.

Data content is another consideration to process large

amount of data to produce a single result. Although

shuffle grouping in distributed stream processing engines

is studied [22], grouping techniques for stateful data gain

more importance than ever. While [23] describes an

integrated approach for dynamic scale out and recovery

of stateful operators, [24] introduces Samza which is a

stateful scalable stream processing solution using at

LinkedIn. This also brings auto-scaling techniques under

consideration. Auto-scaling techniques allows for

handling of unexpected load spikes without the need for

constant overprovisioning [25, 26, 27].

Dynamic Load balancing algorithms also gain

importance with using clusters to process large amount of

data at scale. Distributed Stream Processing Systems

(DSPS) have been widely adopted by major computing

companies such as Facebook and Twitter for performing

scalable event processing in streaming data. However,

dynamically balancing the load of the DSPS’ components

can be particularly challenging due to the high volume of

data, the components’ state management needs, and the

low latency processing requirements. Thus, [28] introduces

a solution that dynamically balances the load of CEP

(Complex Event Processing) engines in real-time and

adapts to sudden changes in the volume of streaming

data by exploiting two balancing policies. Where [29]

introduces a local load balancing that does not require

any global information, [30] introduces dynamic load

balancing algorithm for the S4 parallel stream processing

engine. [31] addresses several issues that are imperative

to grid environments such as handling resource

heterogeneity and sharing, communication latency, job

migration from one site to other, and load balancing.

To succeed a well dynamic load balancing when

processing large amount of data, the system should be

able to route the traffic to the machines in the cluster

evenly regarding to the content of the data. In contrast to

shuffle grouping, this kind of algorithms usually called as

key grouping or stream partitioning. They simply route

the data by partitioning dynamically. Key partitioning

techniques have been studied in MapReduce environment

[32, 33, 34] as well as stream processing systems [35, 36,

37] for achieving efficient and near-optimal load balance.

Load balancing problem is also studied as content-

based routing [38, 39, 40, 41, 42, 43]. Content-based

routing can be performed on the actual content of a

message by applying simple routing rules to the data

itself by intelligent ‘routing’ servers. Intelligent content-

based routing techniques have been proposed to achieve

efficient, adaptive routing and to match up to the

performance in terms of end-to-end latency and

throughput.

Since an additional process is needed to produce a

final result, skewness can be a headache when processing

data in distributed environment. Therefore, load balancing

at scale when data is skewed has also been studied [44,

45, 46, 47]. [48] presents a new key-based workload

partitioning framework, with practical algorithms to

support dynamic workload assignment for stateful

operators and [49] proposes a novel partitioning strategy

called Consistent Grouping (CG), which enables each

processing element instance (PEI) to process the workload

according to its capacity. The main idea behind CG is the

notion of small, equal-sized virtual workers at the sources,

which are assigned to workers based on their capacities.

On the other hand, similarly to our proposition, [50]

proposes a novel load balancing technique that uses a

heavy hitter algorithm to efficiently identify the hottest

keys in the stream. These hot keys are assigned to d ≥ 2

choices to ensure a balanced load, where d is tuned

automatically to minimize the memory and computation

cost of operator replication. The technique works online

and does not require the use of routing tables. Morales

proposes two novel techniques for this tough problem: D-

Choices and W-Choices. These techniques employ a

streaming algorithm to detect heavy hitter for tracking the

hot keys in the stream, which constitute the head of the

distribution of keys, and allows those hot keys to be

processed on larger set of workers.

3.3 Load Balancing in Distributed Systems

Load balancing has become more important as the need

for real-time data processing increases and the need to

produce results as quickly as possible. In this context,

distributed data processing systems such as S4, Storm and

Samza have become even more popular. Because these

systems are capable of real-time processing with very little

latency on large volumes of data on clustered computers.

One solution is to migrate the processes to another

machine when an overload is detected on a machine in

the cluster [4, 5, 6, 7, 8 ,9]. So, the system will rebalance

after a while. Even the method is so simple to understand

or implement, it has some disadvantages in a distributed

world. First of all, we must decide how often we need to

scan the system for imbalances and how often we need to

do the rebalancing. Moreover, the future messages must

be directed to the new machines as well as after a

migration is processed. To be able to do this, every

machine in the cluster must have a number of routing

tables, and the keys and target machines must be stored

for each key distribution which is not feasible in

distributed architectures that receive messages containing

millions of keys from many sources. As the number of

messages increases, the amount of memory the system

needs to use is also increasing.

Flux is a fault-tolerant method that also transfers

processes between the machines in order to balance the

load. Flux monitors the load of each machine and ranks

the machines by load. If a load imbalance is detected, it

tries to rebalance the system by migrating the processes

from the most loaded machine to the least loaded one,

from the second loaded machine to the second least

loaded one and so on [4].

Aurora* and Medusa are other methods of load

balancing by transferring processed between machines

[5]. Aurora can be defined as a centralized streaming data

processing engine. It was developed in order to enable

Aurora to work in distributed architecture and thus

Aurora* and Medusa are proposed. While Aurora*

supports a distribution inside the machines, Medusa

builds a federation between the machines so they can

rebalance the load by communicating and process

transferring between them.

Borealis uses a similar approach but it also aims at

reducing the correlation of load spikes among processes

routed to the same server [6]. This approach is based on

Aurora and builds a common infrastructure to process

both sensor metrics and big server metrics. It also

rebalances the system using a migration policy similar to

Flux. It aims to balance the load on the global scale and

this is achieved through full communication and

cooperation with a brewery of machines assembled under

a single point of administration.

Gedik, however, developed a new partitioning method

for stateful data in distributed environments [7]. It

monitors the key frequencies to control the migration cost

and imbalance in the system. Even if the data is skewed,

the method can keep the migration cost to minimum by

balancing communication between the machines and

memory usages.

Similarly, Balkesen et al. [8] proposed a method to

balance the load between the machines by calculating the

key frequencies of data. It aims to provide a more

dynamic and efficient way of running data processing

tools by controlling the system from out of the cluster.

In another study, Fernandez et al. [9] proposed to

manage the states of the processes out of the system in

which the stateful processes are performed. In this

method, the states are stored as checkpoints and using

these checkpoints, the system becomes fault-tolerant by

distributing the remaining work to other machines in case

of failures and also ensures that the system can be

expanded horizontally.
The above-mentioned studies require either a structure

to be managed by a central system or data transfer

between machines. Neither is sufficient for us to be able

to produce real-time results in distributed systems.

Because, in such systems, the machines constantly send

large amounts of data to each other, and this negatively

affects the overall performance of the system and creates

high network traffic. Moreover, having a centralized

management leads to the whole system stopping and

becoming unavailable in possible error situations. Thus,

the system must be designed in a structure that is fault-

tolerant and capable of operating with high performance.

For this reason, we need for a non-centralized

management and a solution that does not require

transferring data between machines.

Azar introduced PoTC [10] which describes the problem

in terms of balls-and-bins where the balls and the bins

represent the tasks and the machines that tasks would run

in respectively. In contrast to single-choice paradigm,

which is the current solution used by all of DSPEs to

partition a stream by using Key Grouping, PoTC uses two-

choices paradigm which selects two bins uniformly at

random and puts the ball into the least loaded one.

Mitzenmacher also studied PoTC problem and

introduced the supermarket model et al. [11, 12, 13]. This

model can be seen as a generalization of the static load

balancing model studied by Azar. The model focused on

defining an idealized process, corresponding to a system

of infinite size, where the number of servers goes to

infinity. It also demonstrated that in a simple dynamic

load balancing model allowing to choose between two

target machines yields an exponential improvement over

distributing uniformly at random.

In our study, however, we have benefited most from

the work of The Power of Both Choices [14], which was

taken by Morales. In this work, Morales introduced Partial

Key Grouping (PKG) method and we tried to develop the

proposed method. Morales studied the load balancing

problem on DSPEs based on the PoTC approach. In this

work, it is stated that, in the case of selecting two bins, the

gain is theoretically exponential compared to the only

selection. Nevertheless, it is also stated that selection

more than two bins will not provide an exponential gain.

For this reason, two choices are made for each data within

the method.

PKG differs from KG and SG by selecting two targets

before determining the final target. KG and SG, on the

other hand, always select only one target. Moreover, PKG

method is based on two basic techniques: key splitting
and local load estimation. PoTC method is used for key

splitting. In this method, the system identifies two target

machines for each key and directs the message to the

least loaded one. However, it is hard to decide which

target has less load, since we are living in a distributed

world which gives us no chance to know the instant load

of every target machine in a real-time manner. Thus, local

load estimation technique is used to have a knowledge

about the loads. In this technique, each source

independently tracks the load of the downstream. Even if

the system has not a global load oracle, surprisingly, it

performs very well in practice and almost the same results

as the traditional systems with global load oracle have

been obtained.

3.4 Determining Target Machine

Determining the machine to send traffic or data is one of

the basic tasks of the load balancing algorithms. These

algorithms have basically two different methods: the SG

method which determines the target machine regardless

of the content of the data, and other KG-based methods

which determine the target machine by considering the

content of the data.

In the SG method, the Round-Robin method is used to

distribute tasks to the target machines. Since the content

of the data is not important for distribution, the data is

distributed to the machines in turn. In the KG-based

methods, on the other hand, the content of the data is

important. Therefore, the content of the data is used to

determine the target machine. In order to determine the

target machine, the Hash value of the key of the data is

calculated and target machine is determined by

calculating the mode of this value with the number of

machines present in the system as illustrated in Eq.1. The

key values can be defined by using any field of the data.

Defining key is important for stateful operations since

relations of the data is based on the key values i.e.,

customer id. Moreover, with this calculation, it is

guaranteed that all the data with the same key value will

be sent to the exact same machine.

 𝑻𝒎 = 𝑯𝟏(𝒅𝒂𝒕𝒂) % 𝑵𝒎 (1)

In the above equation, H1 is the first hash function, Nm is

the number of available machines, and Tm is target

machine index.

PKG is also a KG-based method and it also uses hashes

to determine the target machine. Contrast to basic KG,

PKG uses two different hash functions and these functions

calculate different results for the same key. As a result,

there will be two different candidates. To select the winner,

minimum load of the two candidate machines will be

calculated by using local load estimation as in illustrated

in Eq.2.

 𝑴𝟏 = 𝑯𝟏(𝒅𝒂𝒕𝒂) % 𝑵𝒎

 𝑴𝟐 = 𝑯𝟐(𝒅𝒂𝒕𝒂) % 𝑵𝒎 (2)

 𝑻𝒎 = 𝒎𝒊𝒏(𝑳(𝑴𝟏), 𝑳(𝑴𝟐))

In the above equation, H1 is the first hash function, H2 is

the second hash function, Nm is the number of available

machines, L is the current load of the given machine

based on local load estimation, and Tm is target machine

index. Tm is calculated by selecting the least loaded

machine between the selected ones.

4 DYNAMIC KEY GROUPING (DKG)

The current key grouping methods can produce successful

results for some special cases. While the SG method is the

best distribution method for stateless datasets, the KG-

based methods are more suitable for stateful applications.

The KG method is highly efficient on homogenous

datasets. The PKG method can produce good results even

on skewed datasets. However, all these methods fail on

highly skewed datasets. Assume that we have a skewed

dataset which have a key value with an 80% proportion

and there are ten machines in the cluster. The KG method

will distribute 80% of the data to a single machine and

20% of the data to other nine machines. On the other

hand, the PKG method will distribute 80% of the data to

two machines evenly and 20% to other eight machines.

This means that the system will work with nearly 10-20%

efficiency under high load, and other 8-9 machines will be

idle. What if our cluster has 100 machines? KG and PKG

will use 1 of 100 and 2 of 100 machines, respectively. And

this will end up with a 1-2% efficiency for the system. It is

obvious that scaling out is not a solution when the data is

highly skewed. Moreover, it will cause more cost without

any benefit. For this reason, we tried to develop a method

that can distribute the load in the most stable manner

without making any horizontal growth and can perform

successful load distribution regardless of the content of

the dataset. Besides, we assumed that the number of

machines to be operated in cluster is fixed. Unlike the PKG

method, the number of targets is not limited to 2 and it

can dynamically change regarding to the content of the

data. In other words, instead of making a constant 2

selections for each data, we let the system to use more

target machines for the more skewed data. Thus, the

system can achieve a more balanced load distribution

under high load. For non-skewed and homogenous

datasets, we set 2 as the number of default targets as

offered by PKG method and we named this method DKG

(Dynamic Key Grouping).

DKG is a smart data distribution algorithm. It basically

detects the skewness in data by measuring local load and

builds a density map. This map stores the most recent hot

keys, and this map is updated during the execution. The

number of target machines is set as 2 by default and DKG

can scale out and scale down the system by using 2 to n

machines dynamically. In addition to this, in order to make

the decision of scaling out, threshold values must be

determined.

4.1 System Components

DKG is based on a few components. These are the

components and the working principles:

4.1.1 Key Item

A Key Item component is created for every key processed

in the system. It contains a list of keys, the last time they

are processed, the total number of occurrences, the last

time Scale Out is checked for this key, and the list of the

machines that the data can be distributed. The DKG

method carries out all decisions and practices through

Key Item components.

4.1.2 Key Space

A component called Key Space was designed to manage

Key Items and to detect data intensities or skewness. The

design of this component is inspired from the JVM Heap

Model as shown in Fig.5.

Objects created on the JVM are first placed in the Eden

Space in Young Generation. When Eden Space is full, the

Minor GC (Garbage Collecting) is activated and the

surviving objects, which are still actively used, are

transferred to the Survivor Space. GC refers to cleaning

objects that are not used by the JVM so that they do not

occupy memory, and this is essential for efficient memory

use. Objects that are active in each GC cycle are preserved

by moving between S0 and S1 Space, while those not

being used are automatically cleared by the JVM. Objects

that are still active after many GC cycles are transferred to

the next stage, Old Generation. In this region, which is

also referred to as Tenured, long-lived objects are held.

This avoids the cost of recreating frequently used and

continuously active objects. Objects in Old Generation are

periodically scanned in a cycle called Major GC, and those

that are not used anymore are cleaned from the memory.

The Permanent Generation contains metadata required by

the JVM to describe the classes and methods used in the

application. Contrary to other regions, this region is not

subject to any GC cycle and the information there is active

throughout the application.

The DKG Key Space model is similar to the JVM Heap

Model and consists of three parts: Baby Space, Teenage

Space, and Old Space. These parts contain Key Items. The

dimensions of these parts are dynamically determined.

The number of expected different keys is estimated by the

system administrator and entered into the system. 10% of

this number is defined as Old Space, and 40% is defined

as Teenage Space. The remaining 50% is defined as Baby

Space. In the scope of this study, we set number of keys as

100 and set as Old Space 10, Teenage Space 40, and Baby

Space 50 Key Items.

While Old Space and Teenage Space have physical

boundaries, Baby Space does not have a physical

boundary. Thus, Old Space and Teenage Space cannot

hold more than 10 and 40 Key Items respectively.

However, Baby Space can hold all Key Items without any

restriction. Thus, all data entering the system are given

sufficient time and space to pass to the next space.

For each key that enters the system, the Old Space,

then the Teenage Space, and the last Baby Space are

scanned first. If it is in the relevant space, the Key Item

component is fetched. The last time and the total number

of that key appeared is updated on the Key Item. If key is

not found in none of these spaces, a new Key Item

component is created and added to Baby Space.

4.1.3 Key Space Manager

The Key Space Manager runs in a separate Thread, which

manages the transition of Key Items within the Key Space

and the GC cycle. It checks the Key Space with a 15-

second cycle and promotes the necessary Key Items from

Baby Space to the Teenage Space. Similarly, it checks the

Key Space with 60-second cycles and promotes the

necessary Key Items from Teenage Space to Old Space.

Key Item change can be bi-directionally between the

Spaces. When a new Key Item enters the system, Key Item

densities in the space may change and the order of the

Key Items becomes degraded. When the cycle time

arrives, Key Items in all spaces are ordered and

promotions are made. To promote Key Items, items from

top to bottom of the Source Space are compared with

items from bottom to up of the Destination Space and the

items with higher occurrence are promoted to next Space

(Baby Space to Teenage Space or Teenage Space to Old

Space).

Moving Key Items from Baby Space to Teenage Space

and Teenage Space to Old Space is executed based on the

instructions defined in Algorithm 1, 2 and 3.

Algorithm 1: promoteToTeenageSpace

Result: Promotes Key Items from Baby Space to Teenage Space

Input: baby space BS, teenage space TS

Output: N/A

sort Key Items in BS

sort Key Items in TS

truncate BS to discard quite new items

call promoteToNextSpace(BS, TS)

wait for 15 seconds

call promoteToTeenageSpace(BS, TS)

Algorithm 2: promoteToOldSpace

Result: Promotes Key Items from Teenage Space to Old Space

Input: teenage space TS, old space OS

Output: N/A

sort Key Items in TS

sort Key Items in OS

call promoteToNextSpace(TS, OS)

wait for 60 seconds

call promoteToOldSpace(TS, OS)

Algorithm 3: promoteToNextSpace

Result: Promotes Key Items to Next Key Space

Fig 5. JVM Heap Model
10

Fig 6. DKG Key Space Management

Input: source space SS, destination space DS

Output: N/A

for each item in DS do

 Fi  first Key Item of SS

 Fio  the number of occurrences of Fi

 Li  the last Key Item of DS

 Lio  the number of occurrences of Li

 if Lio >= Fio then

 break the loop (this means transition completed)

 else

 remove Fi and add to head of the DS

 remove Li and add to tail of the SS

 end

end

4.2 Detecting Skewness

The Keys in Old Space are considered as intensive or skew

data. So, if a key comes up too often, it will be placed in

the Old Space over time and the application will be able

to distribute these keys to additional machines. In other

words, the ability to distribute to more machines for a key

is possible only if this key is in the Old Space.

4.3 Determining the Thresholds

The inclusion of a key in the Old Space is not enough to

allow it to be distributed to additional machines. In

addition to this, both the system needs to be working for

a while (cold start) and the intensity value should reach to

a certain value. Thresholds are needed to compare the

values and decide.

In order to determine the threshold, we first need to

determine the ideal load for the system. We can define

the ideal load as the load evenly distributed through all

machines. Since we compare the load distribution over

the percentage, we can formulate the ideal load as:

𝑳𝒊 = 𝟏𝟎𝟎/𝒎 (3)

In the above equation, Li is the ideal load and m is the

number of machines. Once we calculate the ideal load we

expect in the machines, we can formulate the threshold

value that we determined intuitively as follows:

𝑳𝒔 = 𝑳𝒊 + √𝑳𝒊 (4)

Ls is the threshold load for scaling out. Since the threshold

is based on ideal load, it depends on the number of the

machines. Moreover, distribution to new machines are

prevented because of the slight load increments. Also, we

limit the number of machines that can be selected for a

key. At this point, we are getting a more stable and more

efficient system in the long run.

The table below shows the number of machines in the

system, the ideal load, the threshold and the maximum

number of machines that can be distributed to.

Table 1. Thresholds of ideal loads

 # of
Machines

Ideal Load
(%)

Threshold
Load (%)

of Max
Machines

5 20.00 24.47 5

10 10.00 13.16 8

20 5.00 7.24 14

50 2.00 3.41 30

100 1.00 2.00 51

4.4 Determining the Target Machine

Target machine index is determined by calculating the

hash value of the key and then normalized to stay in the

range. Since there are at least 2 target machines by

default, index and index + 1 are the initial targets of the

key. We simply normalize the index after each

modification to assure that index is in the range.

𝒊𝒏𝒅𝒆𝒙 = 𝒉𝒂𝒔𝒉(𝒌𝒆𝒚) % 𝑵𝒎 (5)

Nm is the number of machines. Rather than keeping the

machines to distribute, PKG only keeps the number of

machines to distribute. Since default value is 2, system

only keeps the keys distributing more than 2 machines

(i.e., K1=4, K2=3). Details are given in Algorithm 4.

Algorithm 4: chooseBestTask

Result: Choses target machine to distribute

Input: key, OldSpace (OS), threshold to scale out (T)

Output: machine index of target machine

hashOfKey  calculate the hash of the key

targetWorkerIndex  calculate target machine by normalizing the

hashOfKey (Eq.5)

Nm  number of machines that the key can be distributed (2 by

default)

LLmin  minimum local load between the available machines

CM  best candidate machine so far

NLL  number of machines have less load than threshold

call findBestCandidate()

call shouldScaleOut()

call shouldScaleDown()

if shouldScaleOut then

 CMnew  call normalize (targerWorkerIndex + Nm)

 LLnew  current local load of CMnew

 if LLnew < LLmin then

 CM  CMnew

 Nm  Nm + 1

 end

else if shouldScaleDown then

 Nm  Nm – 1

 call chooseBestTask(key)

end

return CM

Procedure normalize(index)

 return index % TotalNumberOfMachines

———————————————————————————————————

10
JVM Heap Model:

http://www.oracle.com/webfolder/technetwork/tutorials/obe/java/gc01

/index.html

end

Procedure findBestCandidate()

 for each machine in available machines do

 cl  current local load of machine

 if cl < T then

 NLL  NLL + 1

 end

 if cl < LLmin then

 LLmin  cl

 CM  machine

 end

 end

end

As mentioned before, PKG uses two different hash

functions to determine the target machines. The definition

of the hash function is important. Since the hash of the

data strictly depends on the content of the data, even two

different hash functions may produce the same result. On

the other hand, although the hash functions produce

different results, the data might be sent to same target

machine according to the Eq.1. In this case, the hash

function does not help to distribute data, and load

balancing cannot be achieved. Thus, it results in

performance losses in the system. Contrary to what is

mentioned in the PKG method, there is no guarantee that

the load will be distributed to at least 2 machines. Because

it depends entirely on the content of the data and the key.

In the DKG method, however, hash function is only

used to determine the first machine index. There is no

second hash function. After the first index is determined,

the index values of the other machines are determined by

incrementing the first index value by 1. In this case, it is

always guaranteed that the load will always be distributed

among at least 2 machines.

4.5 Scaling Out

To be able to decide on a scale out, the system needs to

be working for a while which is also called as cold start.

Cold start gives the system a chance to gather as much as

data in order to distinguish which data is skewed or

intensive. After this period, the system can check for a

scale out. As mentioned before, for each key, a target

machine index is calculated, and number of machines is

stored which indicates the spreading width.

As summarized in Algorithm 5, when a new Key Item

comes up, the system checks current load of every

machine that key can be distributed and the least loaded

one is selected. After target machine is selected, the

system compares the load of the machine with the

threshold to decide if a scale out is needed. However,

even exceeding the threshold is not enough to scale out,

the key of the data also should be in Old Space. Since the

DKG method focused on skewed and highly intensive

data, Old Space helps the system to distinguish skew data

and thus unnecessary scale out is prevented for non-skew

data. After the above-mentioned checks, if the system

decides on a scale out, a new machine is designated as a

candidate by increasing the latest index of the available

machines. When the new candidate target machine has

been identified, the current load of the candidate is

compared with the load of the least loaded machine in

the present. If the load of the candidate is greater than

the present, that means there is no need to scale out and

the system will continue to work as present. If the load is

less than the present, then number of the machines

available will be increased by 1 and the system will begin

to route traffic to this machine too.

Algorithm 5: shouldScaleOut

Result: Checks if scale out is needed

Input: key, min load L, scale out threshold T, old space OS

Output: boolean value of result

if not isWarmUp then

 return false

else if L < T then

 return false

else if key not in OS then

 return false

else

 return true

end

Procedure isWarmUp()

 RT  elapsed time in seconds during system running

 if RT > 15 then

 return true

 else

 return false

 end

4.6 Scaling Down

To achieve dynamic scaling, DKG should support scaling

down when the density is back to normal. Otherwise, after

scaling out, the system will be routing traffic to machines

even if it is not necessary. Contrary to scale out operation,

the scaling down is easy. As summarized in Algorithm 6,

when a new data arrives, the current loads of all available

machines are considered. If the number of the available

machines is greater than 2 and at least 2 of them have

less load than the threshold, the system will decide on a

Fig 7. DKG indexes

scaling down. So, the number of machines available will

be decreased by 1 and the system will immediately stop

routing traffic to the latest machine in present.

Algorithm 6: shouldScaleDown

Result: Checks if scale down is needed

Input: WC, NLL

WC  number of target machines for the key

NLL  number of machines that has less load than the scale up

threshold

Output: boolean value of result

if WC > 2 and NLL >= 2 then

 return true

else

 return false

end

4.7 Monitoring the Distribution

Monitoring is required both for instantaneous monitoring

of system performance and for comparison of splitting

methods. Besides the latency and the throughput, we also

should measure extra metrics to be able to compare the

methods. These metrics are gathered by Distribution

Observer which is a completely external component of the

system. It listens the workers and monitors the data

coming to all workers and how they are distributed to the

target machines. We can consider this as a global oracle

who know everything about the topology and all metrics.

This is designed to work with test purposes only to

compare methods, since it is not applicable in a

distributed world.

To monitor in a great manner, we introduced some new

metrics besides the present ones and we hereby discussed

these metrics and how to use them when comparing the

methods:

• Total Count: Specifies the total number of keys in

the data the application is processing. This

information is measured directly on the data

collected by the Distribution Observer.

• Latency (ms): Refers to the time required by the

application to process all the data and it is

calculated by measuring the elapsed time between

the first output and the last output.

• Throughput (rec/s): Refers to the amount of output

of the application, in other words, its productivity.

It is calculated by dividing the total processed data

by the total elapsed time in seconds as formulized

in Eq.6.

 𝑇ℎ = 𝑇𝑜𝑡𝑎𝑙𝐶𝑜𝑢𝑛𝑡 / (𝐿𝑎𝑡𝑒𝑛𝑐𝑦 / 1000) (6)

• Standard Deviation (StdDev): Refers the quantity

expressing by how much the distribution of data or

the load differ from the mean of the load values

for all machines. In other words, it shows how

balanced the load is between the machines. The

lower the standard deviation, the more balanced

the load is distributed. We can calculate StdDev as

formulized in Eq.7 where Li is load of the machine,

Lavg is average load of all machines, and Nm is the

total number of machines.

(7)

• Distribution Cost (DistCost): Refers to how many

different machines the data is distributed. The

more data is distributed to the machines, the more

machines will be waited to gather results from and

the more aggregation will be done in order to

produce the final result. For this reason, the higher

values of DistCost indicates the system is running

inefficiently. DistCost is calculated by dividing the

total number of keys in the machines by the total

number of different keys as formulized in Eq.8.

where Nk is number of total keys, and Ndk is

number of distinct keys. The lowest possible value

is 1 while the highest value is the number of the

worker.

(8)

The SG method has the lowest StdDev since it is the most

stable distributing method of the load, and it has the

highest DistCost since it distributes each data to each

machine. While the KG method has the lowest DistCost

because of distributing the data by considering its

content, it has higher StdDev according to the distribution

of the data. The PKG method has a higher DistCost and

lower StdDev because of distributing better than the KG

method. However, the DKG method, which is introduced

as an alternative to the PKG method, may show higher

and lower values than the PKG method depending on the

content of the data. The StdDev and DistCost that the

methods have according to the data types and contents

can be examined in detail in the experimental outputs in

Section 5.

5 EXPERIMENTS

Experiments were performed to measure the performance

of the proposed algorithm and compare the outputs with

other methods’ results. Within the scope of the

experiment, the algorithms have been tested with several

data sets and configurations. The comparisons were based

on the outputs: StdDev, DistCost, Latency and

Throughput.

5.1 Datasets

In the experiment, 5 real data sets and 12 synthetic data

sets were used. The real data sets consist of twitter and

wikipedia content. Twitter data contains ticker values11

and tweet messages12 collected during the 2016 US

elections. Wikipedia data contains clickstream data13 and

pageview records14,15. The synthetic data consist of the

names of the 204 countries on the globe. In order to

observe how load distribution methods, behave under

different amount of loads, several skewed data sets are

produced at different skewness ratios. The details of the

data sets are given in Table 2.

Table 2. Datasets used in experiment

Dataset Data type
Total Keys
(Million)

Skewness
Ratio (%)

twitter-election Real 5 68

twitter-ticker Real 1,5 10

wikipedia-clickstream Real 8.000 10

wikipedia-pageviews Real 22 9

wikipedia-pageviews-by-
lang Real 588 27
country-skew-r0 Synthetic 10 0

country-skew-r10 Synthetic 10 10

country-skew-r20 Synthetic 10 20

country-skew-r30 Synthetic 10 30

country-skew-r40 Synthetic 10 40

country-skew-r50 Synthetic 10 50

country-skew-r60 Synthetic 10 60

country-skew-r70 Synthetic 10 70

country-skew-r80 Synthetic 10 80

country-skew-r90 Synthetic 10 90

country-skew-r100 Synthetic 10 100

country-half-skew-r80 Synthetic 10 40

5.2 Experiment Topology

Experiment topology is illustrated in Fig.8. In experiment,

all methods (SG, KG, PKG, DKG) are tested with all data

sets and with number of spouts of 5, 10, 15, 20 and

number of workers of 10, 50 and 100. Spouts consume the

data from Kafka16 and direct to Splitters. Splitters then

split the data and distribute to workers which execute the

real processing tasks. After execution, results of workers

are gathered in aggregators and then output is reduced

to yield a single and final result. Final results are also

directed to Kafka to be stored permanently. To visualize

and monitor all processes instantly, Kafka Connect is used

to migrate data into InfluxDB17 from Kafka. Grafana18

helps to visualize metrics stored in InfluxDB. Distribution

Observer, however, is only attached to the system for

detailed monitoring purposes and should be considered

outside of the topology.

5.3 Experiments on Real Datasets

The first experiment was executed with 5 spouts and 10

workers on all the real datasets mentioned above. Since

this paper is focused on high skew datasets and key based

splitting methods, we put twitter-election under the

spotlight which has 68% skewness. Performance metrics

observed on this dataset are given in Table 3. The results

for each dataset are also given in Fig.9. In the graphs, left-

y axises represent the normalized ratios, which are

calculated by dividing the value by the highest value

observed in the experiment. Also note that we want to

achieve low Latency, StdDev and DistCost but high

Throughput.

Table 3. twitter-election performance metrics

METHOD LATENCY
(ms)

STD DEV DIST
COST

THROUGHPUT
(rec/sec)

SG 559,329 0.0001 2.4491 9,511

KG 3,955,045 20.3202 1.0000 1,344

PKG 1,941,879 12.3513 1.1647 2,739

DKG 1,174,979 4.0972 1.2414 4,529

(a)

———————————————————————————————————

11
Tweets Ticker Symbols Used in the Stock Market [14]

12
Tweets During the 2016 Election,

 http://anuragprasad.com/TwitterElection.html
13

Wikipedia Clickstream,

 https://figshare.com/articles/Wikipedia_Clickstream/1305770

14
Wikipedia Pageviews Data During a Day [14]

15
Wikipedia Pageviews by Language,

 https://dumps.wikimedia.org/other/pageviews/
16

Kafka: https://kafka.apache.org/
17

InfluxDB: https://www.influxdata.com/
18

Grafana: https://grafana.com/

Fig 8. System topology used in the experiments

(b) (c)

(d) (e)

As seen in the Fig.9.a, the highest DistCost value was

obtained in the SG method in spite of the highest

throughput rate. On the other hand, the KG method has

the optimal DistCost value but also has high Latency, high

StdDev and low Throughput values. These metrics leads to

poor performance in the KG method. On the other hand,

lower DistCost and StdDev values were observed with PKG

and DKG methods which yields more successful results.

Despite the close DistCost values, the DKG method

produced much more successful results than the PKG

method with higher Throughput and lower StdDev and

Latency values.

Since the skewness of other datasets are close, all other

graphs above, (9.b, 9.d, 9.e), the PKG and DKG methods

produced similar results. However, with wikipedia-

clickstream dataset, as seen in the Fig.9.c, the KG method

produced better results than other methods.

5.4 Experiment on Synthetic Datasets

The second experiment was also executed with 5 Spouts

and 10 Workers. In contrast to the first experiment,

synthetic datasets were used to reveal the performances

of methods with highly skewed datasets.

(a) (b)

(c) (d)

Fig.10. shows the performance of each algorithm with

respect to different ratios of skewness. The increase of

skewness did not cause any change in the SG method

(Fig.10.a) since keys are randomly distributed to workers.

In the KG method, very successful results were achieved

up to the 30% skewness, while performance over 30%

showed a gradual decrease (Fig.10.b). In the PKG method

(Fig.10.c), even though performance degradation was

observed after 20-30% skewness ratio, much more

successful results were obtained up to 60% skewness

compared to the KG method. In the DKG method, the

performance of the system is much more successful and

predictable than the other methods, even with the highest

skewness values (Fig.10.d). This also demonstrates that

DKG is a predictable and scalable method which can run

better under high loads (>60%). The DKG method yields

the second highest Throughput even under quite high

loads like 80-90% while maintaining small DistCost,

StdDev and Latency values. The SKG method has the

highest Throughput value in all test cases but also has the

highest DistCost value.

(a) (b)

(c) (d)

Fig.11. shows the performance metrics of different

methods with changing skewness of synthetic data. As

seen in Fig.11.a, DKG and SG had better Latency values

since the keys are more evenly distributed on the worker

nodes. KG and PKG had continuously increasing latencies

with increasing skewness since load distribution is

negatively affected. Similarly, in Fig.11.b, DKG and SG had

clearly better StdDev values than KG and PKG with

increasing skewness. DKG produced much better results

after 30% skewness and yielded scalable results where

PKG produced continuously increased StdDev values with

the skewness.

As seen in Fig.11.c, SG produced worst DistCost values.

However, other methods produced very similar results

even under higher skewness. DKG had a peek result under

100% skewness, which can be considered as a special case

and out of this paper’s scope. On the other hand, the

Throughput in Fig.11.d had a decrease when the skewness

was getting higher unless the SG method is used.

Although the PKG method had higher Throughput values

under the 30% skewness, the DKG method had better

Throughput values than other methods when the

skewness is higher than 30%. Although the SG method

Fig 9. Performance of the tested method with real datasets

Fig 10. Performance of the tested methods according to changing

skewness ratio of the synthetic datasets

Fig 11. Performance of the tested methods on synthetic datasets in

terms of performance metric

always have higher Throughput values than other

methods, the DKG method provides better trade-off with

lower DistCost and high Throughput values.

5.5 Experiments on Worker Set Size

The third experiment was executed to observe the

performance of the methods against increasing number

of Workers in the topology. Both real and synthetic

dataset were used within the experiment. Since the results

were close to each other with the different skewness

ratios, we only present the results of twitter-election

dataset in Fig 12. The reason for this choice is that it is a

real dataset and had a skewness of 68%.

(a) (b)

(c) (d)

In Fig 12, all graphs basically demonstrated that the

number of workers has not so much impact on the

performance when the skewness is more than 30%. As

seen in the Fig.12.a, the Latency values barely changed

when number of workers are increasing. The Latency of

DKG slightly increased, but it was still better than PKG. KG

has highest, and SG has lowest Latency values as

observed in the previous experiments.

As seen in Fig.12.b, StdDev values decreased for all

methods. KG has highest and SG has lowest StdDev values

as expected. DKG is much better than PKG with closest

results to SG. In Fig.12.c, SG had the highest DistCost

values as expected. Other methods, however, produced

close and stable results with the increasing workers

compared to SG. Similar to DistCost values, SG had the

highest Throughput values as seen in Fig.12.d and all

other methods produced close results compared to SG.

We conclude that increasing the number of workers is

not a good fit for all cases, especially under highly skewed

data load.

5.6 Experiments on Spout Set Size

The fourth experiment was executed to observe the

performance of the methods against increasing number

of Spouts in the topology.

We also used twitter-election dataset for this

experiment and showed the performance results in Fig.13.

The results also showed that increasing number of spouts

had no effect to performance under highly skewed data

load especially the skewness is more than 30%. The DKG

method have better Latency, StdDev, and Throughput

values than the KG and PKG methods. The distribution

costs of KG, PKG, and DKG methods are similar.

6 CONCLUSIONS

We studied the load balancing problem in the presence of

highly skewed and unbalanced stateful data in distributed

stream processing engines (DSPEs). Although the load

balancing is a well-known and studied problem in the

literature, there is not much study with highly skewed and

unbalanced datasets processing in distributed

environments. PKG was introduced to solve this issue as a

new stream partitioning strategy. According to the study,

PKG achieved to reduce the imbalance by improving

throughput and latency up to 45% in contrast to KG.

However, even PKG did not consider the fact that the

variety can increase instantaneously, and the system can

face with a skewness of higher than 30%. In this study, we

addressed to this problem and introduced DKG to achieve

better results in the presence of highly skewed datasets.

DKG improved the stream partitioning strategy by using a

dynamic partitioning algorithm that allows the system to

distribute the load more than two machines, and a

skewness detection mechanism to help partitioning

decision by improving local estimation technique. In

contrast to PKG, we observed that DKG produced better

results by improving the latency up to 7% and throughput

up to 8% with a skewness ratio of 30%. Results have also

shown that DKG produced much better results by

improving the latency up to 48% and throughput up to

93% with a skewness ratio of higher than 80%. As a result

of this study, we concluded that DKG should definitely be

preferred if the skewness is higher than 30% whereas PKG

can be preferred with lower skewness values.

ACKNOWLEDGMENT

I’d like to thank to Mr. Ozan Ali Kaya for giving me his

professional business server to execute my experiments. I

called it Monster and could not execute the experiments

without it. And I’d like to thank to my family, especially to

my wife, Tuğçe Dalabasmaz, for supporting me on this

Fig 12. Performance against increasing workers

Fig 13. Performance against increasing spouts

long and exhausting journey.

REFERENCES

[1] Justin Ellingwood, Big Data Frameworks Compared,

https://www.digitalocean.com/community/tutorials/hadoop-storm-

samza-spark-and-flink-big-data-frameworks-compared (2017).

[2] Jim Scott, Stream Processing Everywhere,

https://mapr.com/blog/stream-processing-everywhere-what-use/

(2017).

[3] Michael G. Noll, Understanding the Parallelism of a Storm

Topology, http://www.michael-

noll.com/blog/2012/10/16/understanding-the-parallelism-of-a-

storm-topology/(June, 2017)

[4] M. A. Shah, J. M. Hellerstein, S. Chandrasekaran, and M. J.

Franklin, “Flux: An adaptive partitioning operator for continuous

query systems,” in ICDE, 2003, pp. 25–36.

[5] M. Cherniack, H. Balakrishnan, M. Balazinska, D. Carney, U. Cetintemel, Y.

Xing, and S. B. Zdonik, “Scalable distributed stream processing,” in CIDR,

vol. 3, 2003, pp. 257–268.

[6] Y. Xing, S. Zdonik, and J.-H. Hwang, “Dynamic load distribution in the

borealis stream processor,” in ICDE, 2005, pp. 791–802.

[7] B. Gedik, “Partitioning functions for stateful data parallelism in stream

processing,” The VLDB Journal, pp. 1–23, 2013.

[8] C. Balkesen, N. Tatbul, and M. T. Özsu, “Adaptive input admission and

management for parallel stream processing,” in DEBS. ACM, 2013, pp.

15–26.

[9] R. Castro Fernandez, M. Migliavacca, E. Kalyvianaki, and P. Pietzuch,

“Integrating scale out and fault tolerance in stream processing using

operator state management,” in SIGMOD, 2013, pp. 725–736.

[10] Y. Azar, A. Z. Broder, A. R. Karlin, and E. Upfal, “Balanced allocations,”

SIAM J. Comput., vol. 29, no. 1, pp. 180–200, 1999.

[11] M. Mitzenmacher, “The power of two choices in randomized

load balancing,” IEEE Trans. Parallel Distrib. Syst., vol. 12, no. 10,

pp. 1094–1104, 2001.

[12] J. Byers, J. Considine, and M. Mitzenmacher, “Geometric

generalizations of the power of two choices,” in SPAA, 2003, pp.

54–63.

[13] M. Mitzenmacher, R. Sitaraman et al., “The power of two

random choices: A survey of techniques and results,” in

Handbook of Randomized Computing, 2001, pp. 255–312.

[14] M. A. U. Nasir, G. De Francisci Morales, D. García-Soriano, N.

Kourtellis and M. Serafini, "The power of both choices: Practical

load balancing for distributed stream processing engines," 2015

IEEE 31st International Conference on Data Engineering, Seoul,

2015, pp. 137-148.

[15] Bifet, Albert; Holmes, Geoff; Kirkby, Richard; Pfahringer,

Bernhard (2010). "MOA: Massive online analysis". The Journal of

Machine Learning Research 99: 1601–1604.

[16] Morales, Gianmarco De Francisci, and Albert Bifet. "SAMOA:

scalable advanced massive online analysis." Journal of Machine

Learning Research 16.1 (2015): 149-153.

[17] B. Lohrmann, P. Janacik and O. Kao, "Elastic Stream Processing

with Latency Guarantees," 2015 IEEE 35th International

Conference on Distributed Computing Systems, Columbus, OH,

2015, pp. 399-410.

[18] Z. Abbas, “Streaming Graph Partitioning : Degree Project in

Distributed Computing at KTH Information and Communication

Technology,” Dissertation, 2016.

[19] Lei Cao , Elke A. Rundensteiner, High performance stream query

processing with correlation-aware partitioning, Proceedings of

the VLDB Endowment, v.7 n.4, p.265-276, December 2013

[20] Cagri Balkesen, Nesime Tatbul, M. Tamer Özsu, Adaptive input

admission and management for parallel stream processing,

Proceedings of the 7th ACM international conference on

Distributed event-based systems, June 29-July 03, 2013,

Arlington, Texas, USA

[21] Sanjeev Kulkarni , Nikunj Bhagat , Maosong Fu , Vikas

Kedigehalli , Christopher Kellogg , Sailesh Mittal , Jignesh M.

Patel , Karthik Ramasamy , Siddarth Taneja, Twitter Heron:

Stream Processing at Scale, Proceedings of the 2015 ACM

SIGMOD International Conference on Management of Data,

May 31-June 04, 2015, Melbourne, Victoria, Australia

[22] Nicoló Rivetti, Emmanuelle Anceaume, Yann Busnel, Leonardo

Querzoni, Bruno Sericola. Online Scheduling for Shuffle

Grouping in Distributed Stream Processing Systems Research

Paper. ACM/IFIP/USENIX Middleware 2016 , Dec 2016, Trento,

Italy.

[23] Raul Castro Fernandez , Matteo Migliavacca , Evangelia

Kalyvianaki , Peter Pietzuch, Integrating scale out and fault

tolerance in stream processing using operator state

management, Proceedings of the 2013 ACM SIGMOD

International Conference on Management of Data, June 22-27,

2013, New York, New York, USA

[24] Shadi A. Noghabi , Kartik Paramasivam , Yi Pan , Navina Ramesh

, Jon Bringhurst , Indranil Gupta , Roy H. Campbell, Samza:

stateful scalable stream processing at LinkedIn, Proceedings of

the VLDB Endowment, v.10 n.12, August 2017

[25] T. Heinze, V. Pappalardo, Z. Jerzak and C. Fetzer, "Auto-scaling

techniques for elastic data stream processing," 2014 IEEE 30th

International Conference on Data Engineering Workshops,

Chicago, IL, 2014, pp. 296-302.

[26] V. Gulisano, R. Jiménez-Peris, M. Patiño-Martínez, C. Soriente

and P. Valduriez, "StreamCloud: An Elastic and Scalable Data

Streaming System," in IEEE Transactions on Parallel and

Distributed Systems, vol. 23, no. 12, pp. 2351-2365, Dec. 2012.

[27] B. Gedik, S. Schneider, M. Hirzel and K. L. Wu, "Elastic Scaling for

Data Stream Processing," in IEEE Transactions on Parallel and

Distributed Systems, vol. 25, no. 6, pp. 1447-1463, June 2014.

[28] Zacheilas N., Zygouras N., Panagiotou N., Kalogeraki V.,

Gunopulos D. (2016) Dynamic Load Balancing Techniques for

Distributed Complex Event Processing Systems. In: Jelasity M.,

Kalyvianaki E. (eds) Distributed Applications and Interoperable

Systems. Lecture Notes in Computer Science, vol 9687. Springer,

Cham

[29] Scott Schneider, Joel Wolf, Kirsten Hildrum, Rohit Khandekar,

and Kun-Lung Wu. 2016. Dynamic Load Balancing for Ordered

Data-Parallel Regions in Distributed Streaming Systems. In

Proceedings of the 17th International Middleware Conference

(Middleware '16). ACM, New York, NY, USA, Article 21, 14 pages.

[30] V. Gil-Costa, N. Hidalgo, E. Rosas and M. Marin, "A Dynamic

Load Balance Algorithm for the S4 Parallel Stream Processing

Engine," 2016 International Symposium on Computer

Architecture and High Performance Computing Workshops

(SBAC-PADW), Los Angeles, CA, 2016, pp. 19-24.

[31] R. Shah, B. Veeravalli and M. Misra, "On the Design of Adaptive

and Decentralized Load Balancing Algorithms with Load

Estimation for Computational Grid Environments," in IEEE

Transactions on Parallel and Distributed Systems, vol. 18, no. 12,

pp. 1675-1686, Dec. 2007.

[32] M. Hanif and C. Lee, "An efficient key partitioning scheme for

heterogeneous MapReduce clusters," 2016 18th International

Conference on Advanced Communication Technology (ICACT),

Pyeongchang, 2016, pp. 364-367.

[33] Gothai Ekambaram and Balasubramanie Palanisamy, "A

Modified Key Partitioning for BigData Using MapReduce in

Hadoop," Journal of Computer Science 2015, 11 (3): 490.497

[34] Ibrahim, S., Jin, H., Lu, L. et al. Peer-to-Peer Netw. Appl. (2013) 6:

409.

[35] Nicoló Rivetti , Leonardo Querzoni , Emmanuelle Anceaume ,

Yann Busnel , Bruno Sericola, Efficient key grouping for near-

optimal load balancing in stream processing systems,

Proceedings of the 9th ACM International Conference on

Distributed Event-Based Systems, June 29-July 03, 2015, Oslo,

Norway

[36] R. Wang and K. Chiu, "A stream partitioning approach to

processing large scale distributed graph datasets," 2013 IEEE

International Conference on Big Data, Silicon Valley, CA, 2013,

pp. 537-542.

[37] N. Xu, B. Cui, L. Chen, Z. Huang and Y. Shao, "Heterogeneous

Environment Aware Streaming Graph Partitioning," in IEEE

Transactions on Knowledge and Data Engineering, vol. 27, no. 6,

pp. 1560-1572, June 1 2015.

[38] Pedro Bizarro , Shivnath Babu , David DeWitt , Jennifer Widom,

Content-based routing: different plans for different data,

Proceedings of the 31st international conference on Very large

data bases, August 30-September 02, 2005, Trondheim, Norway

[39] Guoli Li , Vinod Muthusamy , Hans-Arno Jacobsen, Adaptive

content-based routing in general overlay topologies,

Proceedings of the 9th ACM/IFIP/USENIX International

Conference on Middleware, December 01-05, 2008, Leuven,

Belgium

[40] S. Bhowmik, M. A. Tariq, L. Hegazy and K. Rothermel, "Hybrid

Content-Based Routing Using Network and Application Layer

Filtering," 2016 IEEE 36th International Conference on

Distributed Computing Systems (ICDCS), Nara, 2016, pp. 221-

231.

[41] Muhammad Adnan Tariq , Boris Koldehofe , Kurt Rothermel,

Efficient content-based routing with network topology

inference, Proceedings of the 7th ACM international conference

on Distributed event-based systems, June 29-July 03, 2013,

Arlington, Texas, USA

[42] Sukanya Bhowmik , Muhammad Adnan Tariq , Jonas Grunert ,

Kurt Rothermel, Bandwidth-efficient content-based routing on

software-defined networks, Proceedings of the 10th ACM

International Conference on Distributed and Event-based

Systems, June 20-24, 2016, Irvine, California

[43] Muhammad Shafique, Adaptive Content-based Routing using

Subscription Subgrouping in Structured Overlays, 2016.

(https://arxiv.org/abs/1604.06853)

[44] YongChul Kwon , Magdalena Balazinska , Bill Howe , Jerome

Rolia, SkewTune: mitigating skew in mapreduce applications,

Proceedings of the 2012 ACM SIGMOD International

Conference on Management of Data, May 20-24, 2012,

Scottsdale, Arizona, USA

[45] X. Zhang, H. Chen and F. Hu, "Back Propagation Grouping: Load

Balancing at Global Scale When Sources Are Skewed," 2017 IEEE

International Conference on Services Computing (SCC),

Honolulu, HI, 2017, pp. 426-433.

[46] Y. Le, J. Liu, F. Ergün and D. Wang, "Online load balancing for

MapReduce with skewed data input," IEEE INFOCOM 2014 -

IEEE Conference on Computer Communications, Toronto, ON,

2014, pp. 2004-2012.

[47] L. Cheng, S. Kotoulas, T. E. Ward and G. Theodoropoulos,

"Efficiently Handling Skew in Outer Joins on Distributed

Systems," 2014 14th IEEE/ACM International Symposium on

Cluster, Cloud and Grid Computing, Chicago, IL, 2014, pp. 295-

304.

[48] Junhua Fang, Rong Zhang, Tom Z.J. Fu, Zhenjie Zhang, Aoying

Zhou, and Junhua Zhu. 2017. Parallel Stream Processing Against

Workload Skewness and Variance. In Proceedings of the 26th

International Symposium on High-Performance Parallel and

Distributed Computing (HPDC '17). ACM, New York, NY, USA,

15-26.

[49] Muhammad Anis Uddin Nasir, Hiroshi Horii, Marco Serafini,

Nicolas Kourtellis, Rudy Raymond, Sarunas Girdzijauskas,

Takayuki Osogami, Load Balancing for Skewed Streams on

Heterogeneous Cluster, https://arxiv.org/abs/1705.09073

[50] M. A. U. Nasir, G. D. F. Morales, N. Kourtellis and M. Serafini,

"When two choices are not enough: Balancing at scale in

Distributed Stream Processing," 2016 IEEE 32nd International

Conference on Data Engineering (ICDE), Helsinki, 2016, pp. 589-

600.

Orhun Dalabasmaz is AWS Certified
Solution Architect and DevOps Engineer
currently working at OpsGenie. He graduated
from Department of Computer Engineering at
Hacettepe University in 2010. He is
interested in Big Data and Cloud Solutions
like AWS, Storm, Kafka etc. He is currently
researching and working on making scalable,

highly available and reliable systems in the AWS environment.

Ahmet Burak Can is the Vice Head of the
Department of Computer Engineering at
Hacettepe University. His primary research
interests concentrate on two main fields:
network security and computer vision. While
he is interested peer-to-peer networks and
applications of cryptography in the network
security field, he is also interested in medical
image processing and usage of depth
information in various vision problems in the

computer vision field.

	1 Introduction
	2 Stream Processıng Methods
	2.1 Data Processing Types
	2.2 Stream Processing Engines
	2.3 Storm Architecture

	3 Load Balancıng Methods
	4 Dynamıc Key Groupıng (DKG)
	5 Experıments
	6 Conclusıons
	Acknowledgment
	References

