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A Load Balancing Algorithm for Distributed 
Stream Processing Engines 

Orhun Dalabasmaz, Ahmet Burak Can 

Abstract—Load balancing is important more than ever in distributed world, especially with Stream Processing. The load should 

be equally balanced among the servers in order to achieve lower latencies. We study the problem of load balancing in 

distributed stream processing engines in the presence of data skewness. We examined the current approaches and solutions 

then introduced Dynamic Key Grouping (DKG), an improved stream partitioning schema based on Partial Key Grouping (PKG) 

technique which also adapts the classical “power of two choices” approach. DKG is a smart stream partitioning algorithm that 

can detect the skewness and share the load among the servers regardless of the data content, thus reduces the latency and 

increases throughput. In contrast to PKG, DKG achieves this by distributing data to more than two servers depending on the 

amount of the load. 

We test DKG alongside of KG, SG and PKG on several large datasets, both real-world and synthetic on a Storm topology. 

Compared to PKG, DKG improves the latency up to 7% and throughput up to %8 when the skewness is 30%. Moreover, DKG 

improves the latency up to 48% and throughput up to 93% when the skewness is higher than 80%. However, we conclude that 

PKG is acceptable and preferable with the skewness under 30%. 

Index Terms—Distributed stream processing, load balancing, power of multiple choices, key grouping, stream partitioning. 

——————————   ◆   —————————— 

1 INTRODUCTION

ith the technological age we are in, technological 

devices are an indispensable part of our life. Every 

day, the devices used and the applications and users of 

these devices are also increasing. All these increases cause 

a huge grow of data produced and so the variety of data. 

The volume and the variety of the produced data is so 

increased that it is no longer possible for single machine 

to stand alone. On the other hand, requirements force us 

to process data in real-time. Therefore, cluster of 

machines is used for high efficiency, fault-tolerant and 

robust systems. By using cluster, we aim to process all 

data as soon as possible by distributing the data to all 

nodes in cluster. In order to achieve this, the data or the 

load should be distributed to the machines as equally as 

possible. Unbalanced distribution of the load means that a 

number of machines will work more intensively than 

others, and thus each machine will not be used efficiently. 

Systems that process real-time data have two main 

problems to consider: i) the data processing speed should 

be higher than the speed of data arrival, and ii) the data 

should be distributed evenly among all the machines in 

the cluster. Besides the first fact, it is a necessity for all 

real-time data processing applications, and it is also 

related to the algorithms to be run directly on the data. 

For this reason, it is not possible to offer a general 

solution in this regard. 

Distributing the data evenly among the machines, on 

the other hand, can be improved by accepted approaches, 

depending on the content of the data. In the ideal 

scenario, the data can be distributed equally to the 

machines so that we can obtain the lowest latency. At this 

point, the determinative one for us is whether there is a 

relationship between the data to be processed. If the data 

are independent of each other, the data can be distributed 

equally, as mentioned. However, if there is a relationship 

between the data, thus the data alone is insignificant or 

incomplete, then we need to design a structure that 

aggregates the stateful data and generates a valuable 

output. 

Conventional approaches suggest two different 

solutions: i) each related data is distinguished by a key 

value should be send to the same machine, ii) all the data 

should be distributed equally to the machines, but 

afterwards an extra machine should perform the task of 

aggregating the data in order to have valuable result. In 

the first approach, depending on the content of the 

incoming data, if the data is so skew, some machines will 

be overloaded while others have very little load. This 

causes the data processing speed to be reduced 

considerably and the machines not to be used efficiently. 

In the second approach, although the load is always 

guaranteed to be distributed in a balanced manner, the 

fact that the data related to each other is distributed to all 

the machines causes the data to be insignificant and to be 

aggregated again on another machine. This brings 

additional cost to the system. Both approaches can 

produce different results depending on the type and 

content of the data. Both methods are not practicable, as 

they are real-time data processing, and we cannot know 
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the kind and the content of the upcoming data next. 

In this paper, the problem of balanced distribution of 

data load between machines has been studied and load 

balancing approaches such as Key Grouping (KG), Shuffle 

Grouping (SG) and Partial Key Grouping (PKG) have been 

examined. The current approaches and the proposed new 

approach, Dynamic Key Grouping (DKG), have been 

thoroughly compared and tested with several datasets. 

The datasets are determined that each approach can and 

cannot be applied. Furthermore, we prove that the 

proposed approach, Dynamic Key Grouping, is particularly 

successful in skew datasets. 

The rest of the paper is structured as follows: In Section 

2, we briefly explain Stream Processing systems and then 

explain Storm in detail which is the Stream Processing 

Engine we used in our experiments. In Section 3, we 

examine the load balancing methods and existing 

methods such as Key Grouping (KG) and Shuffle Grouping 

(SG) in the Storm library. We also examine and elaborate 

the proposed new methods for the cases where the 

mentioned methods are inadequate in this context. In 

Section 4, we propose a new method against these non-

performing methods in the existence of skew datasets and 

call it as Dynamic Key Grouping (DKG). Furthermore, we 

also give the details of the proposal and the architecture 

of the solution. In Section 5, we give the resources and 

datasets used, and provide information about setting up 

environments and related software components. In 

Section 6, we give details about the execution of the 

application. We provide simulation results demonstrating 

the benefits of the proposed method with existence of 

skew data and evaluate the results. We also mention the 

problems encountered in this context. In Section 7, we 

outline the results, discuss the method, and the future 

work. 

2 STREAM PROCESSING METHODS 

In this section, we will go through the stream processing 

methods and take a glance at the data processing 

structures which are visualized in Figure-1. 

 
Fig 1. Data processing systems 

2.1 Data Processing Types 

Data processing methods are structurally divided into two 

groups as Distributed and Non-Distributed and in terms 

of processing of the data, they are divided into two 

groups as Batch Data Processing and Stream Data 

Processing. 

 

2.1.1 Non-Distributed Data Processing 

Data is processed in a single machine. Because of the 

system works on one physical machine, architecture does 

not support horizontal growth, only vertical growth, and 

CPU and RAM resources are possible to increase. Since 

the operations are performed on a single machine, the 

application is dominant and there is no need to receive 

information from other machines. 

 

2.1.2 Distributed Data Processing 

Data is distributed to several machines to be processed. In 

distributed structures, there are computer clusters. That is, 

the system can operate simultaneously on more than one 

physical machine. The architecture is suitable for growing 

horizontally, and all applications that will work should plan 

operations by predicting that more than one machine will 

work. Since the data is distributed to more than one 

machine, the coordination between the machines must be 

managed and the information in the other machines must 

be taken in order to be able to produce meaningful 

results and be combined into a single point. 

 

2.1.3 Batch Data Processing 

Batch Data Processing refers to the processing of a large 

volume of data independently of one another. So, there is 

no relation between the arrival time and the processing 

time of the data. For a while the incoming data are 

collected in a place and processed collectively at certain 

time intervals. In this method, when the data is being 

processed, the entire data is under control and its size is 

well known. 

 

2.1.4 Stream Data Processing 

Unlike Batch Data Processing, Stream Data Processing 

involves continuity and motion. Instead of collecting and 

processing the data, the data is turned into streams and 

processed one by one. Stream Data Processing methods 

have the ability to perform event-driven continuous 

processing. However, there are no time constraints to 

process the data and produce results. 

 

2.1.5 Real-time Data Processing 

Streaming Data Processing is often confused with Real-

Time Data Processing because they have very close 

meanings. For this reason, it is necessary to understand 

the difference. Real Time Data Processing applications 

have to work continuously, that is, continuous data input 

and output is done through the system. In addition, there 

is time constraint compared to Stream Data Processing. In 

other words, the data entering the system should be 

processed in the shortest time to produce output. We can 

exemplify this in our home TVs. Televisions must process 

the stream of video streaming from the satellite as soon 



 

 

as possible and display it on the screen, otherwise we may 

watch a live broadcast delayed for a few minutes. 

Real-Time Data Processing methods are basically 

Stream Data Processing methods which have to work 

continuously with time constraints. So, the more efficient 

and fast the Stream Data Processing algorithms work, the 

more real-time results we get. Processing of some data 

may take some time. In those cases where data can be 

accepted according to the nature of the study and the 

work, we will have Near Real-Time results. 

 

2.1.6 Hybrid Data Processing 

Hybrid Data Processing, which is also called as Lambda 

architecture, provides the combined use of both Batch 

Data Processing and Stream Data Processing methods for 

large-scale data processing. In this way, Batch Data 

Processing provides efficiency in terms of delay time, 

productivity, error resilience, and instantaneous tracking 

of changes with Stream Data Processing. 

2.2 Stream Processing Engines 

Stream processing engines are used for processing data 

from an unbounded and lasting stream source. Stream 

Data Processing has also been adopted as a next 

generation programming approach, apart from being a 

Big Data Environment. Even when working on a simple 

array, the flow of data dynamics is beginning to be used. 

For such a widespread structure, many open-source 

coded data processing tools have been developed. In 

general, the problems solved by them are close to each 

other, but they can differ and be preferred in terms of 

their development and solution methods over time. Some 

of these are: Samza1, S42, Spark3, Storm4, Heron5, Kafka 

Streams6, Hazelcast Jet7 and Kinesis8. In this study, we 

used Storm to run our application on. 

Storm4 is a stream processing framework that focuses 

on extremely low latency and is perhaps the best option 

for workloads that require near real-time processing. It 

can handle very large quantities of data and deliver results 

with less latency than other solutions [1]. 

 

 

 

 

 

 

 

 

2.3 Storm Architecture 

Storm architecture is very similar to Hadoop architecture. 

While MapReduce jobs are run in Hadoop, topologies are 

run in Storm. Storm is also compared to Spark. One of the 

biggest fundamental differences between the two is that 

Storm works on individual events as Samza does, and 

Spark Streaming works on micro-batches [2]. 

 

2.3.1 Storm Basics 

Storm stream processing works by orchestrating DAGs 

(Directed Acyclic Graphs) which consists of spouts and 

bolts. This framework is called as topology and totally 

based on tuples and streams. Topologies are a process 

structure that includes the steps of retrieving the 

incoming dataset from the source, performing various 

operations, and generating output. A Tuple is the 

minimum data package that can be transferred between 

the spouts and bolts, and it also describes the data 

structure. Stream, on the other hand, refers to an 

unlimited number of Tuple series. The source of the 

Stream in topology is a Spout. Spout is the entrance point 

of the data and data may be gathered from a queue, API 

or any other file systems. Bolts, on the other hand, 

represents a processing step that consumes streams, 

applies an operation on them, and outputs the result as a 

stream. Bolts are connected to each of the Spouts and 

other Bolts as show in Fig2. to compose a topology. 

 

2.3.2 Storm Cluster Architecture 

Storm cluster architecture, as seem in Fig.3, has two types 

of nodes, Nimbus (master node), Supervisor (worker 

node) and a coordinator, Zookeeper9. Nimbus is a 

daemon similar to Job Tracker in Hadoop and responsible 

for running the topology. Nimbus analyses the topology, 

distributes the code to be run in workers, gathers the 

tasks to be executed and then assigns tasks to the 

available Supervisors (workers). A supervisor, on the other 

hand, may have one or more worker process and 

delegates the tasks to these processes. 

Nimbus and Supervisor run as fail-fast and stateless. 

Being stateless lets the system more reliable and fault 

tolerant. Although the machines do not store states, 

Storm is not entirely stateless though. The states of the 

coordination and the communication between Nimbus 

and Supervisor should be handled separately by another 

system, Zookeeper. Zookeeper stores the states and helps 

a failed nimbus or supervisor to be restarted and made to 

work from where it left. 
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1 
Samza: http://samza.apache.org/ 

2 
S4: https://github.com/s4 

3 
Spark: http://spark.apache.org/ 

4 
Storm: http://storm.apache.org/ 

5 
Heron: https://twitter.github.io/heron/ 

6 
Kafka Streams: https://kafka.apache.org/documentation/streams 

7 
Hazelcast Jet: http://jet.hazelcast.org/ 

8 
Kinesis: https://aws.amazon.com/kinesis/ 

——————————————————————————————————— 

9 
Zookeeper: https://zookeeper.apache.org/ 

Fig 2. Storm topology 



  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.3.3 Worker Process, Executor and Task in Topologies 

In a Storm topology, there may be more than one worker 

processes running. Each worker process executes a subset 

of a topology and runs in its own JVM. An executor is a 

thread that is spawned by a worker process and runs 

within the worker’s JVM. An executor may run one or 

more tasks for the same component (spout or bolt). A 

task performs the actual data processing and is run within 

its parent executor’s thread of execution. Each spout or 

bolt that you implement in your code executes as many 

tasks across the cluster [3]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.3.4 Grouping 

A stream grouping defines how that stream should be 

partitioned among the bolt's tasks. There are eight built-in 

stream groupings in Storm, and moreover, we can 

implement a custom stream grouping too. Above all else, 

there are two base grouping methods: Shuffle Grouping 

and Key/Fields Grouping. In Shuffle Grouping (SG), tuples 

are randomly distributed across the bolt’s tasks and we 

can basically be sure that each task gets an equal number 

of tuples. In Key/Fields Grouping (KG), on the other hand, 

tuples are distributed across the bolt’s tasks by the fields 

specified in the grouping. These fields belong the data 

and we can choose which fields to be key for distribution. 

In case we choose user name field as key with Key 

Grouping, then we can guarantee that each tuple with the 

same user name, will always go to the same exact task, 

but tuples with different user names may go to different 

tasks. This will make it easier to do some calculations over 

the related data. As you may notice, contrary to Shuffle 

Grouping, we cannot guarantee that each task will get an 

equal number of tuples. Because, the distribution depends 

on the data and the field chosen as key and this may lead 

some tasks getting more tuples than the others. For such 

cases, the third option is to define our custom stream 

grouping. In custom stream grouping, we can decide 

which tuple will go to which task. 

3 LOAD BALANCING METHODS 

Distributing the data evenly may be crucial to achieve 

high performance which helps to increase throughput and 

reduce latency. 

 

3.1 Data Distribution and Processed Data Relation 

Distribution of the tuples depends directly on the content 

of the data. If the data is stateless, we can use Shuffle 

Grouping without considering the content of the data. 

This will help us to distribute the tuples evenly across the 

tasks and get high performance from the topology. With 

the stateful data, however, we need to gather related data 

into the same place in order to aggregate and obtain a 

single and final result. In this case, we should prefer Key 

Grouping because Key Grouping natively gathers related 

data into the same place. On the one hand, with Shuffle 

Grouping, we will have to gather all distributed data into 

the single place, and this will bring extra burden to 

system. On the other hand, since we cannot predict the 

stream data, Key Grouping may still bring extra burden to 

system. Because in case of skew data input, load will be 

gathered in a single task executor. 

It’s the last thing we want to have an impacted system 

by skew data. Because the same type of data that might 

come in at certain times can adversely affect the 

performance of the system and reduce productivity and 

increase latency. Such delay can be costly in systems that 

operate in real time and produce output. Also, because we 

cannot always predict future data, our system will not be 

stable and scalable. This means that the system will work 

in an unpredictable way. 

Another problem is that we cannot control the entire 

system. If we could manage the whole distribution in the 

system from a single point, it would be possible for us to 

distribute the load in the best way as long as we dominate 

the entire system. However, in systems with distributed 

architecture, having a single machine that knows 

everything is not recommended, not very practical. For 

this reason, it is inevitable to concentrate on alternative 

solutions to solve the problem of load balancing in 

distributed systems. 

 

 

Fig 3. Storm cluster structure 

Fig 4. Storm Worker Topology 



 

 

 

3.2 Related Works 

Since the need of many big data applications in science 

and industry have arisen, several solutions have been 

proposed to analyze large amounts of streamed or event 

data with low latency [15, 16]. 

Stream processing engines also gain popularity with 

the need of real-time results after processing large of 

data. [17] presents a reactive strategy to enforce latency 

guarantees in data flows running on scalable Stream 

Processing Engines (SPEs), while minimizing resource 

consumption. [18] shows that the custom partitioning 

methods, compared to default hash partitioning, save the 

memory space by reducing the size of aggregate states 

during execution of different graph processing algorithms 

on the resulting partitions. [19] proposes an effective 

partitioning strategy that uses a correlation-aware multi-

route stream query optimizer (or CMR) for highly 

correlated data. It uses multi-route optimization which is 

based on the insight that tuples with similar statistical 

properties are likely to be best served by the same route 

[14]. Multi-route first divides data streams into several 

partitions and then creates a separate query plan for each 

combination of partitions. [20] proposes an adaptive input 

admission and management for parallel stream 

processing and it takes as input any available information 

about input stream behaviors and the requirements of the 

query processing layer, and adaptively decides how to 

adjust the entry points of streams to the system. To have a 

robust system at scale is also important for applications 

that processes large of data in a very brief amount of time 

like Twitter which uses Heron [21] to process stream at 

scale. 

Data content is another consideration to process large 

amount of data to produce a single result. Although 

shuffle grouping in distributed stream processing engines 

is studied [22], grouping techniques for stateful data gain 

more importance than ever. While [23] describes an 

integrated approach for dynamic scale out and recovery 

of stateful operators, [24] introduces Samza which is a 

stateful scalable stream processing solution using at 

LinkedIn. This also brings auto-scaling techniques under 

consideration. Auto-scaling techniques allows for 

handling of unexpected load spikes without the need for 

constant overprovisioning [25, 26, 27]. 

Dynamic Load balancing algorithms also gain 

importance with using clusters to process large amount of 

data at scale. Distributed Stream Processing Systems 

(DSPS) have been widely adopted by major computing 

companies such as Facebook and Twitter for performing 

scalable event processing in streaming data. However, 

dynamically balancing the load of the DSPS’ components 

can be particularly challenging due to the high volume of 

data, the components’ state management needs, and the 

low latency processing requirements. Thus, [28] introduces 

a solution that dynamically balances the load of CEP 

(Complex Event Processing) engines in real-time and 

adapts to sudden changes in the volume of streaming 

data by exploiting two balancing policies. Where [29] 

introduces a local load balancing that does not require 

any global information, [30] introduces dynamic load 

balancing algorithm for the S4 parallel stream processing 

engine. [31] addresses several issues that are imperative 

to grid environments such as handling resource 

heterogeneity and sharing, communication latency, job 

migration from one site to other, and load balancing. 

To succeed a well dynamic load balancing when 

processing large amount of data, the system should be 

able to route the traffic to the machines in the cluster 

evenly regarding to the content of the data. In contrast to 

shuffle grouping, this kind of algorithms usually called as 

key grouping or stream partitioning. They simply route 

the data by partitioning dynamically. Key partitioning 

techniques have been studied in MapReduce environment 

[32, 33, 34] as well as stream processing systems [35, 36, 

37] for achieving efficient and near-optimal load balance. 

Load balancing problem is also studied as content-

based routing [38, 39, 40, 41, 42, 43]. Content-based 

routing can be performed on the actual content of a 

message by applying simple routing rules to the data 

itself by intelligent ‘routing’ servers. Intelligent content-

based routing techniques have been proposed to achieve 

efficient, adaptive routing and to match up to the 

performance in terms of end-to-end latency and 

throughput. 

Since an additional process is needed to produce a 

final result, skewness can be a headache when processing 

data in distributed environment. Therefore, load balancing 

at scale when data is skewed has also been studied [44, 

45, 46, 47]. [48] presents a new key-based workload 

partitioning framework, with practical algorithms to 

support dynamic workload assignment for stateful 

operators and [49] proposes a novel partitioning strategy 

called Consistent Grouping (CG), which enables each 

processing element instance (PEI) to process the workload 

according to its capacity. The main idea behind CG is the 

notion of small, equal-sized virtual workers at the sources, 

which are assigned to workers based on their capacities. 

On the other hand, similarly to our proposition, [50] 

proposes a novel load balancing technique that uses a 

heavy hitter algorithm to efficiently identify the hottest 

keys in the stream. These hot keys are assigned to d ≥ 2 

choices to ensure a balanced load, where d is tuned 

automatically to minimize the memory and computation 

cost of operator replication. The technique works online 

and does not require the use of routing tables. Morales 

proposes two novel techniques for this tough problem: D-

Choices and W-Choices. These techniques employ a 

streaming algorithm to detect heavy hitter for tracking the 

hot keys in the stream, which constitute the head of the 

distribution of keys, and allows those hot keys to be 

processed on larger set of workers. 

 

3.3 Load Balancing in Distributed Systems 

Load balancing has become more important as the need 

for real-time data processing increases and the need to 

produce results as quickly as possible. In this context, 

distributed data processing systems such as S4, Storm and 

Samza have become even more popular. Because these 

systems are capable of real-time processing with very little 



  

 

latency on large volumes of data on clustered computers. 

 

One solution is to migrate the processes to another 

machine when an overload is detected on a machine in 

the cluster [4, 5, 6, 7, 8 ,9]. So, the system will rebalance 

after a while. Even the method is so simple to understand 

or implement, it has some disadvantages in a distributed 

world. First of all, we must decide how often we need to 

scan the system for imbalances and how often we need to 

do the rebalancing. Moreover, the future messages must 

be directed to the new machines as well as after a 

migration is processed. To be able to do this, every 

machine in the cluster must have a number of routing 

tables, and the keys and target machines must be stored 

for each key distribution which is not feasible in 

distributed architectures that receive messages containing 

millions of keys from many sources. As the number of 

messages increases, the amount of memory the system 

needs to use is also increasing. 

Flux is a fault-tolerant method that also transfers 

processes between the machines in order to balance the 

load. Flux monitors the load of each machine and ranks 

the machines by load. If a load imbalance is detected, it 

tries to rebalance the system by migrating the processes 

from the most loaded machine to the least loaded one, 

from the second loaded machine to the second least 

loaded one and so on [4]. 

Aurora* and Medusa are other methods of load 

balancing by transferring processed between machines 

[5]. Aurora can be defined as a centralized streaming data 

processing engine. It was developed in order to enable 

Aurora to work in distributed architecture and thus 

Aurora* and Medusa are proposed. While Aurora* 

supports a distribution inside the machines, Medusa 

builds a federation between the machines so they can 

rebalance the load by communicating and process 

transferring between them. 

Borealis uses a similar approach but it also aims at 

reducing the correlation of load spikes among processes 

routed to the same server [6]. This approach is based on 

Aurora and builds a common infrastructure to process 

both sensor metrics and big server metrics. It also 

rebalances the system using a migration policy similar to 

Flux. It aims to balance the load on the global scale and 

this is achieved through full communication and 

cooperation with a brewery of machines assembled under 

a single point of administration. 

Gedik, however, developed a new partitioning method 

for stateful data in distributed environments [7]. It 

monitors the key frequencies to control the migration cost 

and imbalance in the system. Even if the data is skewed, 

the method can keep the migration cost to minimum by 

balancing communication between the machines and 

memory usages. 

Similarly, Balkesen et al. [8] proposed a method to 

balance the load between the machines by calculating the 

key frequencies of data. It aims to provide a more 

dynamic and efficient way of running data processing 

tools by controlling the system from out of the cluster. 

In another study, Fernandez et al. [9] proposed to 

manage the states of the processes out of the system in 

which the stateful processes are performed. In this 

method, the states are stored as checkpoints and using 

these checkpoints, the system becomes fault-tolerant by 

distributing the remaining work to other machines in case 

of failures and also ensures that the system can be 

expanded horizontally. 
The above-mentioned studies require either a structure 

to be managed by a central system or data transfer 

between machines. Neither is sufficient for us to be able 

to produce real-time results in distributed systems. 

Because, in such systems, the machines constantly send 

large amounts of data to each other, and this negatively 

affects the overall performance of the system and creates 

high network traffic. Moreover, having a centralized 

management leads to the whole system stopping and 

becoming unavailable in possible error situations. Thus, 

the system must be designed in a structure that is fault-

tolerant and capable of operating with high performance. 

For this reason, we need for a non-centralized 

management and a solution that does not require 

transferring data between machines. 

Azar introduced PoTC [10] which describes the problem 

in terms of balls-and-bins where the balls and the bins 

represent the tasks and the machines that tasks would run 

in respectively. In contrast to single-choice paradigm, 

which is the current solution used by all of DSPEs to 

partition a stream by using Key Grouping, PoTC uses two-

choices paradigm which selects two bins uniformly at 

random and puts the ball into the least loaded one. 

Mitzenmacher also studied PoTC problem and 

introduced the supermarket model et al. [11, 12, 13]. This 

model can be seen as a generalization of the static load 

balancing model studied by Azar. The model focused on 

defining an idealized process, corresponding to a system 

of infinite size, where the number of servers goes to 

infinity. It also demonstrated that in a simple dynamic 

load balancing model allowing to choose between two 

target machines yields an exponential improvement over 

distributing uniformly at random. 

In our study, however, we have benefited most from 

the work of The Power of Both Choices [14], which was 

taken by Morales. In this work, Morales introduced Partial 

Key Grouping (PKG) method and we tried to develop the 

proposed method. Morales studied the load balancing 

problem on DSPEs based on the PoTC approach. In this 

work, it is stated that, in the case of selecting two bins, the 

gain is theoretically exponential compared to the only 

selection. Nevertheless, it is also stated that selection 

more than two bins will not provide an exponential gain. 

For this reason, two choices are made for each data within 

the method. 

PKG differs from KG and SG by selecting two targets 

before determining the final target. KG and SG, on the 

other hand, always select only one target. Moreover, PKG 

method is based on two basic techniques: key splitting 
and local load estimation. PoTC method is used for key 

splitting. In this method, the system identifies two target 

machines for each key and directs the message to the 

least loaded one. However, it is hard to decide which 



 

 

target has less load, since we are living in a distributed 

world which gives us no chance to know the instant load 

of every target machine in a real-time manner. Thus, local 

load estimation technique is used to have a knowledge 

about the loads. In this technique, each source 

independently tracks the load of the downstream. Even if 

the system has not a global load oracle, surprisingly, it 

performs very well in practice and almost the same results 

as the traditional systems with global load oracle have 

been obtained. 

 

3.4 Determining Target Machine 

Determining the machine to send traffic or data is one of 

the basic tasks of the load balancing algorithms. These 

algorithms have basically two different methods: the SG 

method which determines the target machine regardless 

of the content of the data, and other KG-based methods 

which determine the target machine by considering the 

content of the data. 

In the SG method, the Round-Robin method is used to 

distribute tasks to the target machines. Since the content 

of the data is not important for distribution, the data is 

distributed to the machines in turn. In the KG-based 

methods, on the other hand, the content of the data is 

important. Therefore, the content of the data is used to 

determine the target machine. In order to determine the 

target machine, the Hash value of the key of the data is 

calculated and target machine is determined by 

calculating the mode of this value with the number of 

machines present in the system as illustrated in Eq.1. The 

key values can be defined by using any field of the data. 

Defining key is important for stateful operations since 

relations of the data is based on the key values i.e., 

customer id. Moreover, with this calculation, it is 

guaranteed that all the data with the same key value will 

be sent to the exact same machine. 

 

 𝑻𝒎 = 𝑯𝟏(𝒅𝒂𝒕𝒂) % 𝑵𝒎   (1) 

 

In the above equation, H1 is the first hash function, Nm is 

the number of available machines, and Tm is target 

machine index. 

PKG is also a KG-based method and it also uses hashes 

to determine the target machine. Contrast to basic KG, 

PKG uses two different hash functions and these functions 

calculate different results for the same key. As a result, 

there will be two different candidates. To select the winner, 

minimum load of the two candidate machines will be 

calculated by using local load estimation as in illustrated 

in Eq.2. 

 

 𝑴𝟏 = 𝑯𝟏(𝒅𝒂𝒕𝒂) % 𝑵𝒎  

 𝑴𝟐 = 𝑯𝟐(𝒅𝒂𝒕𝒂) % 𝑵𝒎   (2) 

 𝑻𝒎 = 𝒎𝒊𝒏(𝑳(𝑴𝟏), 𝑳(𝑴𝟐))  

 

In the above equation, H1 is the first hash function, H2 is 

the second hash function, Nm is the number of available 

machines, L is the current load of the given machine 

based on local load estimation, and Tm is target machine 

index. Tm is calculated by selecting the least loaded 

machine between the selected ones. 

4 DYNAMIC KEY GROUPING (DKG) 

The current key grouping methods can produce successful 

results for some special cases. While the SG method is the 

best distribution method for stateless datasets, the KG-

based methods are more suitable for stateful applications. 

The KG method is highly efficient on homogenous 

datasets. The PKG method can produce good results even 

on skewed datasets. However, all these methods fail on 

highly skewed datasets. Assume that we have a skewed 

dataset which have a key value with an 80% proportion 

and there are ten machines in the cluster. The KG method 

will distribute 80% of the data to a single machine and 

20% of the data to other nine machines. On the other 

hand, the PKG method will distribute 80% of the data to 

two machines evenly and 20% to other eight machines. 

This means that the system will work with nearly 10-20% 

efficiency under high load, and other 8-9 machines will be 

idle. What if our cluster has 100 machines? KG and PKG 

will use 1 of 100 and 2 of 100 machines, respectively. And 

this will end up with a 1-2% efficiency for the system. It is 

obvious that scaling out is not a solution when the data is 

highly skewed. Moreover, it will cause more cost without 

any benefit. For this reason, we tried to develop a method 

that can distribute the load in the most stable manner 

without making any horizontal growth and can perform 

successful load distribution regardless of the content of 

the dataset. Besides, we assumed that the number of 

machines to be operated in cluster is fixed. Unlike the PKG 

method, the number of targets is not limited to 2 and it 

can dynamically change regarding to the content of the 

data. In other words, instead of making a constant 2 

selections for each data, we let the system to use more 

target machines for the more skewed data. Thus, the 

system can achieve a more balanced load distribution 

under high load. For non-skewed and homogenous 

datasets, we set 2 as the number of default targets as 

offered by PKG method and we named this method DKG 

(Dynamic Key Grouping). 

DKG is a smart data distribution algorithm. It basically 

detects the skewness in data by measuring local load and 

builds a density map. This map stores the most recent hot 

keys, and this map is updated during the execution. The 

number of target machines is set as 2 by default and DKG 

can scale out and scale down the system by using 2 to n 

machines dynamically. In addition to this, in order to make 

the decision of scaling out, threshold values must be 

determined. 

 

4.1 System Components 

DKG is based on a few components. These are the 

components and the working principles: 

 

4.1.1 Key Item 

A Key Item component is created for every key processed 

in the system. It contains a list of keys, the last time they 

are processed, the total number of occurrences, the last 

time Scale Out is checked for this key, and the list of the 



  

 

machines that the data can be distributed. The DKG 

method carries out all decisions and practices through 

Key Item components. 

4.1.2 Key Space 

A component called Key Space was designed to manage 

Key Items and to detect data intensities or skewness. The 

design of this component is inspired from the JVM Heap 

Model as shown in Fig.5.  

Objects created on the JVM are first placed in the Eden 

Space in Young Generation. When Eden Space is full, the 

Minor GC (Garbage Collecting) is activated and the 

surviving objects, which are still actively used, are 

transferred to the Survivor Space. GC refers to cleaning 

objects that are not used by the JVM so that they do not 

occupy memory, and this is essential for efficient memory 

use. Objects that are active in each GC cycle are preserved 

by moving between S0 and S1 Space, while those not 

being used are automatically cleared by the JVM. Objects 

that are still active after many GC cycles are transferred to 

the next stage, Old Generation. In this region, which is 

also referred to as Tenured, long-lived objects are held. 

This avoids the cost of recreating frequently used and 

continuously active objects. Objects in Old Generation are 

periodically scanned in a cycle called Major GC, and those 

that are not used anymore are cleaned from the memory. 

The Permanent Generation contains metadata required by 

the JVM to describe the classes and methods used in the 

application. Contrary to other regions, this region is not 

subject to any GC cycle and the information there is active 

throughout the application. 
 

 

 

 

 

 

 

 

 

The DKG Key Space model is similar to the JVM Heap 

Model and consists of three parts: Baby Space, Teenage 

Space, and Old Space. These parts contain Key Items. The 

dimensions of these parts are dynamically determined. 

The number of expected different keys is estimated by the 

system administrator and entered into the system. 10% of 

this number is defined as Old Space, and 40% is defined 

as Teenage Space. The remaining 50% is defined as Baby 

Space. In the scope of this study, we set number of keys as 

100 and set as Old Space 10, Teenage Space 40, and Baby 

Space 50 Key Items. 

 

 

 

 

 

 

 

 

While Old Space and Teenage Space have physical 

boundaries, Baby Space does not have a physical 

boundary. Thus, Old Space and Teenage Space cannot 

hold more than 10 and 40 Key Items respectively. 

However, Baby Space can hold all Key Items without any 

restriction. Thus, all data entering the system are given 

sufficient time and space to pass to the next space. 

For each key that enters the system, the Old Space, 

then the Teenage Space, and the last Baby Space are 

scanned first. If it is in the relevant space, the Key Item 

component is fetched. The last time and the total number 

of that key appeared is updated on the Key Item. If key is 

not found in none of these spaces, a new Key Item 

component is created and added to Baby Space. 

 

4.1.3 Key Space Manager 

The Key Space Manager runs in a separate Thread, which 

manages the transition of Key Items within the Key Space 

and the GC cycle. It checks the Key Space with a 15-

second cycle and promotes the necessary Key Items from 

Baby Space to the Teenage Space. Similarly, it checks the 

Key Space with 60-second cycles and promotes the 

necessary Key Items from Teenage Space to Old Space. 

Key Item change can be bi-directionally between the 

Spaces. When a new Key Item enters the system, Key Item 

densities in the space may change and the order of the 

Key Items becomes degraded. When the cycle time 

arrives, Key Items in all spaces are ordered and 

promotions are made. To promote Key Items, items from 

top to bottom of the Source Space are compared with 

items from bottom to up of the Destination Space and the 

items with higher occurrence are promoted to next Space 

(Baby Space to Teenage Space or Teenage Space to Old 

Space). 

Moving Key Items from Baby Space to Teenage Space 

and Teenage Space to Old Space is executed based on the 

instructions defined in Algorithm 1, 2 and 3. 

 

Algorithm 1: promoteToTeenageSpace 

Result: Promotes Key Items from Baby Space to Teenage Space 

Input: baby space BS, teenage space TS 

Output: N/A 

sort Key Items in BS 

sort Key Items in TS 

truncate BS to discard quite new items 

call promoteToNextSpace(BS, TS) 

wait for 15 seconds 

call promoteToTeenageSpace(BS, TS) 

 

Algorithm 2: promoteToOldSpace 

Result: Promotes Key Items from Teenage Space to Old Space 

Input: teenage space TS, old space OS 

Output: N/A 

sort Key Items in TS 

sort Key Items in OS 

call promoteToNextSpace(TS, OS) 

wait for 60 seconds 

call promoteToOldSpace(TS, OS) 

 

Algorithm 3: promoteToNextSpace 

Result: Promotes Key Items to Next Key Space 

Fig 5. JVM Heap Model
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Fig 6. DKG Key Space Management 



 

 

Input: source space SS, destination space DS 

Output: N/A 

for each item in DS do 

    Fi  first Key Item of SS 

    Fio  the number of occurrences of Fi 

    Li  the last Key Item of DS 

    Lio  the number of occurrences of Li 

    if Lio >= Fio then  

        break the loop (this means transition completed) 

    else 

        remove Fi and add to head of the DS 

        remove Li and add to tail of the SS 

    end 

end 

 

4.2 Detecting Skewness 

The Keys in Old Space are considered as intensive or skew 

data. So, if a key comes up too often, it will be placed in 

the Old Space over time and the application will be able 

to distribute these keys to additional machines. In other 

words, the ability to distribute to more machines for a key 

is possible only if this key is in the Old Space. 

 

4.3 Determining the Thresholds 

The inclusion of a key in the Old Space is not enough to 

allow it to be distributed to additional machines. In 

addition to this, both the system needs to be working for 

a while (cold start) and the intensity value should reach to 

a certain value. Thresholds are needed to compare the 

values and decide. 

In order to determine the threshold, we first need to 

determine the ideal load for the system. We can define 

the ideal load as the load evenly distributed through all 

machines. Since we compare the load distribution over 

the percentage, we can formulate the ideal load as: 

 

𝑳𝒊 = 𝟏𝟎𝟎/𝒎     (3) 

 

In the above equation, Li is the ideal load and m is the 

number of machines. Once we calculate the ideal load we 

expect in the machines, we can formulate the threshold 

value that we determined intuitively as follows: 

 

𝑳𝒔 = 𝑳𝒊 + √𝑳𝒊      (4) 

 

Ls is the threshold load for scaling out. Since the threshold 

is based on ideal load, it depends on the number of the 

machines. Moreover, distribution to new machines are 

prevented because of the slight load increments. Also, we 

limit the number of machines that can be selected for a 

key. At this point, we are getting a more stable and more 

efficient system in the long run. 

The table below shows the number of machines in the 

system, the ideal load, the threshold and the maximum 

number of machines that can be distributed to. 

 

 

 

 

Table 1. Thresholds of ideal loads 

 # of  
Machines 

Ideal Load 
(%) 

Threshold 
Load (%) 

# of Max  
Machines 

5 20.00 24.47 5 

10 10.00 13.16 8 

20 5.00 7.24 14 

50 2.00 3.41 30 

100 1.00 2.00 51 

 

4.4 Determining the Target Machine 

Target machine index is determined by calculating the 

hash value of the key and then normalized to stay in the 

range. Since there are at least 2 target machines by 

default, index and index + 1 are the initial targets of the 

key. We simply normalize the index after each 

modification to assure that index is in the range. 

 

𝒊𝒏𝒅𝒆𝒙 = 𝒉𝒂𝒔𝒉(𝒌𝒆𝒚) % 𝑵𝒎   (5) 

 

Nm is the number of machines. Rather than keeping the 

machines to distribute, PKG only keeps the number of 

machines to distribute. Since default value is 2, system 

only keeps the keys distributing more than 2 machines 

(i.e., K1=4, K2=3). Details are given in Algorithm 4. 

 

Algorithm 4: chooseBestTask 

Result: Choses target machine to distribute 

Input: key, OldSpace (OS), threshold to scale out (T) 

Output: machine index of target machine 

hashOfKey  calculate the hash of the key 

targetWorkerIndex  calculate target machine by normalizing the 

hashOfKey (Eq.5) 

Nm  number of machines that the key can be distributed (2 by 

default) 

LLmin  minimum local load between the available machines 

CM  best candidate machine so far 

NLL  number of machines have less load than threshold  

call findBestCandidate() 

call shouldScaleOut() 

call shouldScaleDown() 

if shouldScaleOut then 

    CMnew  call normalize (targerWorkerIndex + Nm) 

    LLnew  current local load of CMnew 

    if LLnew < LLmin then 

        CM  CMnew 

        Nm  Nm + 1 

    end 

else if shouldScaleDown then 

    Nm  Nm – 1 

    call chooseBestTask(key) 

end 

return CM 

 

Procedure normalize(index) 

    return index % TotalNumberOfMachines 

——————————————————————————————————— 
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end 

 

Procedure findBestCandidate() 

    for each machine in available machines do 

        cl  current local load of machine 

        if cl < T then 

            NLL  NLL + 1 

        end 

        if cl < LLmin then 

            LLmin  cl 

            CM  machine 

        end 

    end 

end 

 

As mentioned before, PKG uses two different hash 

functions to determine the target machines. The definition 

of the hash function is important. Since the hash of the 

data strictly depends on the content of the data, even two 

different hash functions may produce the same result. On 

the other hand, although the hash functions produce 

different results, the data might be sent to same target 

machine according to the Eq.1. In this case, the hash 

function does not help to distribute data, and load 

balancing cannot be achieved. Thus, it results in 

performance losses in the system. Contrary to what is 

mentioned in the PKG method, there is no guarantee that 

the load will be distributed to at least 2 machines. Because 

it depends entirely on the content of the data and the key. 

In the DKG method, however, hash function is only 

used to determine the first machine index. There is no 

second hash function. After the first index is determined, 

the index values of the other machines are determined by 

incrementing the first index value by 1. In this case, it is 

always guaranteed that the load will always be distributed 

among at least 2 machines. 

 

4.5 Scaling Out 

To be able to decide on a scale out, the system needs to 

be working for a while which is also called as cold start. 

Cold start gives the system a chance to gather as much as 

data in order to distinguish which data is skewed or 

intensive. After this period, the system can check for a 

scale out. As mentioned before, for each key, a target 

machine index is calculated, and number of machines is 

stored which indicates the spreading width. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As summarized in Algorithm 5, when a new Key Item 

comes up, the system checks current load of every 

machine that key can be distributed and the least loaded 

one is selected. After target machine is selected, the 

system compares the load of the machine with the 

threshold to decide if a scale out is needed. However, 

even exceeding the threshold is not enough to scale out, 

the key of the data also should be in Old Space. Since the 

DKG method focused on skewed and highly intensive 

data, Old Space helps the system to distinguish skew data 

and thus unnecessary scale out is prevented for non-skew 

data. After the above-mentioned checks, if the system 

decides on a scale out, a new machine is designated as a 

candidate by increasing the latest index of the available 

machines. When the new candidate target machine has 

been identified, the current load of the candidate is 

compared with the load of the least loaded machine in 

the present. If the load of the candidate is greater than 

the present, that means there is no need to scale out and 

the system will continue to work as present. If the load is 

less than the present, then number of the machines 

available will be increased by 1 and the system will begin 

to route traffic to this machine too. 

 

Algorithm 5: shouldScaleOut 

Result: Checks if scale out is needed 

Input: key, min load L, scale out threshold T, old space OS 

Output: boolean value of result 

if not isWarmUp then 

    return false 

else if L < T then 

    return false 

else if key not in OS then 

    return false 

else 

    return true 

end 

 

Procedure isWarmUp() 

    RT  elapsed time in seconds during system running 

    if RT > 15 then 

        return true 

    else 

        return false 

    end 

 

4.6 Scaling Down 

To achieve dynamic scaling, DKG should support scaling 

down when the density is back to normal. Otherwise, after 

scaling out, the system will be routing traffic to machines 

even if it is not necessary. Contrary to scale out operation, 

the scaling down is easy. As summarized in Algorithm 6, 

when a new data arrives, the current loads of all available 

machines are considered. If the number of the available 

machines is greater than 2 and at least 2 of them have 

less load than the threshold, the system will decide on a 

Fig 7. DKG indexes 



 

 

scaling down. So, the number of machines available will 

be decreased by 1 and the system will immediately stop 

routing traffic to the latest machine in present. 

Algorithm 6: shouldScaleDown 

Result: Checks if scale down is needed 

Input: WC, NLL 

WC  number of target machines for the key 

NLL  number of machines that has less load than the scale up 

threshold 

Output: boolean value of result 

if WC > 2 and NLL >= 2 then 

    return true 

else 

    return false 

end 

 

4.7 Monitoring the Distribution 

Monitoring is required both for instantaneous monitoring 

of system performance and for comparison of splitting 

methods. Besides the latency and the throughput, we also 

should measure extra metrics to be able to compare the 

methods. These metrics are gathered by Distribution 

Observer which is a completely external component of the 

system. It listens the workers and monitors the data 

coming to all workers and how they are distributed to the 

target machines. We can consider this as a global oracle 

who know everything about the topology and all metrics. 

This is designed to work with test purposes only to 

compare methods, since it is not applicable in a 

distributed world. 

To monitor in a great manner, we introduced some new 

metrics besides the present ones and we hereby discussed 

these metrics and how to use them when comparing the 

methods: 

• Total Count: Specifies the total number of keys in 

the data the application is processing. This 

information is measured directly on the data 

collected by the Distribution Observer. 

• Latency (ms): Refers to the time required by the 

application to process all the data and it is 

calculated by measuring the elapsed time between 

the first output and the last output. 

• Throughput (rec/s): Refers to the amount of output 

of the application, in other words, its productivity. 

It is calculated by dividing the total processed data 

by the total elapsed time in seconds as formulized 

in Eq.6. 

 

 𝑇ℎ = 𝑇𝑜𝑡𝑎𝑙𝐶𝑜𝑢𝑛𝑡 / (𝐿𝑎𝑡𝑒𝑛𝑐𝑦 / 1000)   (6) 

 

• Standard Deviation (StdDev): Refers the quantity 

expressing by how much the distribution of data or 

the load differ from the mean of the load values 

for all machines. In other words, it shows how 

balanced the load is between the machines. The 

lower the standard deviation, the more balanced 

the load is distributed. We can calculate StdDev as 

formulized in Eq.7 where Li is load of the machine, 

Lavg is average load of all machines, and Nm is the 

total number of machines. 

 

 

 

 

 

(7) 

 

 

 

 

• Distribution Cost (DistCost): Refers to how many 

different machines the data is distributed. The 

more data is distributed to the machines, the more 

machines will be waited to gather results from and 

the more aggregation will be done in order to 

produce the final result. For this reason, the higher 

values of DistCost indicates the system is running 

inefficiently. DistCost is calculated by dividing the 

total number of keys in the machines by the total 

number of different keys as formulized in Eq.8. 

where Nk is number of total keys, and Ndk is 

number of distinct keys. The lowest possible value 

is 1 while the highest value is the number of the 

worker. 

 

(8) 

 

The SG method has the lowest StdDev since it is the most 

stable distributing method of the load, and it has the 

highest DistCost since it distributes each data to each 

machine. While the KG method has the lowest DistCost 

because of distributing the data by considering its 

content, it has higher StdDev according to the distribution 

of the data. The PKG method has a higher DistCost and 

lower StdDev because of distributing better than the KG 

method. However, the DKG method, which is introduced 

as an alternative to the PKG method, may show higher 

and lower values than the PKG method depending on the 

content of the data. The StdDev and DistCost that the 

methods have according to the data types and contents 

can be examined in detail in the experimental outputs in 

Section 5. 

5 EXPERIMENTS 

Experiments were performed to measure the performance 

of the proposed algorithm and compare the outputs with 

other methods’ results. Within the scope of the 

experiment, the algorithms have been tested with several 

data sets and configurations. The comparisons were based 

on the outputs: StdDev, DistCost, Latency and 

Throughput. 

 

 

 

 

 

 

 

 



  

 

 

 

 

 

5.1 Datasets 

In the experiment, 5 real data sets and 12 synthetic data 

sets were used. The real data sets consist of twitter and 

wikipedia content. Twitter data contains ticker values11 

and tweet messages12 collected during the 2016 US 

elections. Wikipedia data contains clickstream data13 and 

pageview records14,15. The synthetic data consist of the 

names of the 204 countries on the globe. In order to 

observe how load distribution methods, behave under 

different amount of loads, several skewed data sets are 

produced at different skewness ratios. The details of the 

data sets are given in Table 2. 

 

Table 2. Datasets used in experiment 

Dataset Data type 
Total Keys 
(Million) 

Skewness 
Ratio (%) 

twitter-election Real 5 68 

twitter-ticker Real 1,5 10 

wikipedia-clickstream Real 8.000 10 

wikipedia-pageviews Real 22 9 

wikipedia-pageviews-by-
lang Real  588  27  
country-skew-r0 Synthetic 10 0 

country-skew-r10 Synthetic 10 10 

country-skew-r20 Synthetic 10 20 

country-skew-r30 Synthetic 10 30 

country-skew-r40 Synthetic 10 40 

country-skew-r50 Synthetic 10 50 

country-skew-r60 Synthetic 10 60 

country-skew-r70 Synthetic 10 70 

country-skew-r80 Synthetic 10 80 

country-skew-r90 Synthetic 10 90 

country-skew-r100 Synthetic 10 100 

country-half-skew-r80 Synthetic 10 40 

 

5.2 Experiment Topology 

Experiment topology is illustrated in Fig.8. In experiment, 

all methods (SG, KG, PKG, DKG) are tested with all data 

sets and with number of spouts of 5, 10, 15, 20 and 

number of workers of 10, 50 and 100. Spouts consume the 

data from Kafka16 and direct to Splitters. Splitters then 

split the data and distribute to workers which execute the 

real processing tasks. After execution, results of workers 

are gathered in aggregators and then output is reduced 

to yield a single and final result. Final results are also 

directed to Kafka to be stored permanently. To visualize 

and monitor all processes instantly, Kafka Connect is used 

to migrate data into InfluxDB17 from Kafka. Grafana18 

helps to visualize metrics stored in InfluxDB. Distribution 

Observer, however, is only attached to the system for 

detailed monitoring purposes and should be considered 

outside of the topology. 

 

 

 

 

 

 

 

 

 

5.3 Experiments on Real Datasets 

The first experiment was executed with 5 spouts and 10 

workers on all the real datasets mentioned above. Since 

this paper is focused on high skew datasets and key based 

splitting methods, we put twitter-election under the 

spotlight which has 68% skewness. Performance metrics 

observed on this dataset are given in Table 3. The results 

for each dataset are also given in Fig.9. In the graphs, left-

y axises represent the normalized ratios, which are 

calculated by dividing the value by the highest value 

observed in the experiment. Also note that we want to 

achieve low Latency, StdDev and DistCost but high 

Throughput. 

 

Table 3. twitter-election performance metrics 

METHOD LATENCY 
(ms) 

STD DEV DIST 
COST 

THROUGHPUT 
(rec/sec) 

SG 559,329 0.0001 2.4491 9,511 

KG 3,955,045 20.3202 1.0000 1,344 

PKG 1,941,879 12.3513 1.1647 2,739 

DKG 1,174,979 4.0972 1.2414 4,529 
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11 
Tweets Ticker Symbols Used in the Stock Market [14] 

12 
Tweets During the 2016 Election,  

    http://anuragprasad.com/TwitterElection.html 
13 

Wikipedia Clickstream,  

    https://figshare.com/articles/Wikipedia_Clickstream/1305770
 

14 
Wikipedia Pageviews Data During a Day [14] 

15 
Wikipedia Pageviews by Language,  

    https://dumps.wikimedia.org/other/pageviews/ 
16 

Kafka: https://kafka.apache.org/ 
17 

InfluxDB: https://www.influxdata.com/ 
18 

Grafana: https://grafana.com/ 

Fig 8. System topology used in the experiments 
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(d)    (e) 

 

 

As seen in the Fig.9.a, the highest DistCost value was 

obtained in the SG method in spite of the highest 

throughput rate.  On the other hand, the KG method has 

the optimal DistCost value but also has high Latency, high 

StdDev and low Throughput values. These metrics leads to 

poor performance in the KG method. On the other hand, 

lower DistCost and StdDev values were observed with PKG 

and DKG methods which yields more successful results. 

Despite the close DistCost values, the DKG method 

produced much more successful results than the PKG 

method with higher Throughput and lower StdDev and 

Latency values. 

Since the skewness of other datasets are close, all other 

graphs above, (9.b, 9.d, 9.e), the PKG and DKG methods 

produced similar results. However, with wikipedia-

clickstream dataset, as seen in the Fig.9.c, the KG method 

produced better results than other methods. 

 

5.4 Experiment on Synthetic Datasets 

The second experiment was also executed with 5 Spouts 

and 10 Workers. In contrast to the first experiment, 

synthetic datasets were used to reveal the performances 

of methods with highly skewed datasets. 
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Fig.10. shows the performance of each algorithm with 

respect to different ratios of skewness. The increase of 

skewness did not cause any change in the SG method 

(Fig.10.a) since keys are randomly distributed to workers. 

In the KG method, very successful results were achieved 

up to the 30% skewness, while performance over 30% 

showed a gradual decrease (Fig.10.b). In the PKG method 

(Fig.10.c), even though performance degradation was 

observed after 20-30% skewness ratio, much more 

successful results were obtained up to 60% skewness 

compared to the KG method. In the DKG method, the 

performance of the system is much more successful and 

predictable than the other methods, even with the highest 

skewness values (Fig.10.d). This also demonstrates that 

DKG is a predictable and scalable method which can run 

better under high loads (>60%). The DKG method yields 

the second highest Throughput even under quite high 

loads like 80-90% while maintaining small DistCost, 

StdDev and Latency values. The SKG method has the 

highest Throughput value in all test cases but also has the 

highest DistCost value. 
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Fig.11. shows the performance metrics of different 

methods with changing skewness of synthetic data. As 

seen in Fig.11.a, DKG and SG had better Latency values 

since the keys are more evenly distributed on the worker 

nodes. KG and PKG had continuously increasing latencies 

with increasing skewness since load distribution is 

negatively affected. Similarly, in Fig.11.b, DKG and SG had 

clearly better StdDev values than KG and PKG with 

increasing skewness. DKG produced much better results 

after 30% skewness and yielded scalable results where 

PKG produced continuously increased StdDev values with 

the skewness. 

As seen in Fig.11.c, SG produced worst DistCost values. 

However, other methods produced very similar results 

even under higher skewness. DKG had a peek result under 

100% skewness, which can be considered as a special case 

and out of this paper’s scope. On the other hand, the 

Throughput in Fig.11.d had a decrease when the skewness 

was getting higher unless the SG method is used. 

Although the PKG method had higher Throughput values 

under the 30% skewness, the DKG method had better 

Throughput values than other methods when the 

skewness is higher than 30%. Although the SG method 

Fig 9. Performance of the tested method with real datasets 

Fig 10. Performance of the tested methods according to changing 

skewness ratio of the synthetic datasets 

Fig 11. Performance of the tested methods on synthetic datasets in 

terms of performance metric 



  

 

always have higher Throughput values than other 

methods, the DKG method provides better trade-off with 

lower DistCost and high Throughput values.  

 

 

5.5 Experiments on Worker Set Size 

The third experiment was executed to observe the 

performance of the methods against increasing number 

of Workers in the topology. Both real and synthetic 

dataset were used within the experiment. Since the results 

were close to each other with the different skewness 

ratios, we only present the results of twitter-election 

dataset in Fig 12. The reason for this choice is that it is a 

real dataset and had a skewness of 68%. 
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In Fig 12, all graphs basically demonstrated that the 

number of workers has not so much impact on the 

performance when the skewness is more than 30%. As 

seen in the Fig.12.a, the Latency values barely changed 

when number of workers are increasing. The Latency of 

DKG slightly increased, but it was still better than PKG. KG 

has highest, and SG has lowest Latency values as 

observed in the previous experiments. 

As seen in Fig.12.b, StdDev values decreased for all 

methods. KG has highest and SG has lowest StdDev values 

as expected. DKG is much better than PKG with closest 

results to SG.  In Fig.12.c, SG had the highest DistCost 

values as expected. Other methods, however, produced 

close and stable results with the increasing workers 

compared to SG. Similar to DistCost values, SG had the 

highest Throughput values as seen in Fig.12.d and all 

other methods produced close results compared to SG. 

We conclude that increasing the number of workers is 

not a good fit for all cases, especially under highly skewed 

data load. 

 

5.6 Experiments on Spout Set Size 

The fourth experiment was executed to observe the 

performance of the methods against increasing number 

of Spouts in the topology. 

We also used twitter-election dataset for this 

experiment and showed the performance results in Fig.13. 

The results also showed that increasing number of spouts 

had no effect to performance under highly skewed data 

load especially the skewness is more than 30%. The DKG 

method have better Latency, StdDev, and Throughput 

values than the KG and PKG methods. The distribution 

costs of KG, PKG, and DKG methods are similar. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6 CONCLUSIONS 

We studied the load balancing problem in the presence of 

highly skewed and unbalanced stateful data in distributed 

stream processing engines (DSPEs). Although the load 

balancing is a well-known and studied problem in the 

literature, there is not much study with highly skewed and 

unbalanced datasets processing in distributed 

environments. PKG was introduced to solve this issue as a 

new stream partitioning strategy. According to the study, 

PKG achieved to reduce the imbalance by improving 

throughput and latency up to 45% in contrast to KG. 

However, even PKG did not consider the fact that the 

variety can increase instantaneously, and the system can 

face with a skewness of higher than 30%. In this study, we 

addressed to this problem and introduced DKG to achieve 

better results in the presence of highly skewed datasets. 

DKG improved the stream partitioning strategy by using a 

dynamic partitioning algorithm that allows the system to 

distribute the load more than two machines, and a 

skewness detection mechanism to help partitioning 

decision by improving local estimation technique. In 

contrast to PKG, we observed that DKG produced better 

results by improving the latency up to 7% and throughput 

up to 8% with a skewness ratio of 30%. Results have also 

shown that DKG produced much better results by 

improving the latency up to 48% and throughput up to 

93% with a skewness ratio of higher than 80%. As a result 

of this study, we concluded that DKG should definitely be 

preferred if the skewness is higher than 30% whereas PKG 

can be preferred with lower skewness values. 
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